30.5 Functions of the Second Kind30.7 Graphics

§30.6 Functions of Complex Argument

The solutions

30.6.1
\mathop{\mathit{Ps}^{{m}}_{{n}}\/}\nolimits\!\left(z,\gamma^{2}\right),
\mathop{\mathit{Qs}^{{m}}_{{n}}\/}\nolimits\!\left(z,\gamma^{2}\right),

of (30.2.1) with \mu=m and \lambda=\mathop{\lambda^{{m}}_{{n}}\/}\nolimits\!\left(\gamma^{2}\right) are real when z\in(1,\infty), and their principal values (§4.2(i)) are obtained by analytic continuation to \Complex\setminus(-\infty,1].