Notations ANotations C
Notations B
*A♦B♦CDEFGHIJKLMNOPQRSTUVWXYZ
\mathop{B_{{n}}\/}\nolimits
Bernoulli numbers; §24.2(i)
\mathop{b_{{k}}\/}\nolimits
kth zero of Airy \mathop{\mathrm{Bi}\/}\nolimits; §9.9(i)
\mathop{b^{{\prime}}_{{k}}\/}\nolimits
kth zero of Airy {\mathop{\mathrm{Bi}\/}\nolimits^{{\prime}}}; §9.9(i)
\mathop{B^{{(\ell)}}_{{n}}\/}\nolimits
generalized Bernoulli numbers; §24.16(i)
B_{{n-k}}^{{(n)}}=\mathop{s\/}\nolimits\!\left(n,k\right)/\binom{n-1}{k-1}
notation used by Milne-Thomson (1933); §26.1
(with \mathop{s\/}\nolimits\!\left(n,k\right): Stirling number of the first kind and \binom{m}{n}: binomial coefficient)
B_{{n-k}}^{{(-k)}}=\mathop{S\/}\nolimits\!\left(n,k\right)/\binom{n}{k}
notation used by Milne-Thomson (1933); §26.1
(with \mathop{S\/}\nolimits\!\left(n,k\right): Stirling number of the second kind and \binom{m}{n}: binomial coefficient)
\mathop{B^{{(x)}}_{{n}}\/}\nolimits
Nörlund polynomials; §24.16(i)
\mathop{B\/}\nolimits\!\left(n\right)
Bell number; §26.7(i)
\mathop{B_{{n}}\/}\nolimits\!\left(x\right)
Bernoulli polynomials; §24.2(i)
\mathop{B_{{\nu}}\/}\nolimits\!\left(\mathbf{T}\right)
Bessel function of matrix argument (second kind); (35.5.3)
\mathop{B_{{n}}\/}\nolimits\!\left(z\right)
generalized Airy function; §9.13(i)
\mathop{b_{{n}}\/}\nolimits\!\left(q\right)
eigenvalues of Mathieu equation; §28.2(v)
\mathop{\widetilde{B}_{{n}}\/}\nolimits\!\left(x\right)
periodic Bernoulli functions; §24.2(iii)
\mathop{B_{{k}}\/}\nolimits\!\left(z,p\right)
generalized Airy function; §9.13(ii)
\mathop{B^{{(\ell)}}_{{n}}\/}\nolimits\!\left(x\right)
generalized Bernoulli polynomials; §24.16(i)
\mathop{b^{{n}}_{{\nu}}\/}\nolimits\!\left(k^{2}\right)
eigenvalues of Lamé’s equation; §29.3(i)
\mathop{\mathrm{B}\/}\nolimits\!\left(a,b\right)
beta function; (5.12.1)
\mathop{\mathrm{B}_{{m}}\/}\nolimits\!\left(a,b\right)
multivariate beta function; (35.3.3)
\mathop{\mathrm{B}_{{x}}\/}\nolimits\!\left(a,b\right)
incomplete beta function; (8.17.1)
\mathop{\mathrm{B}_{{q}}\/}\nolimits\!\left(a,b\right)
q-beta function; (5.18.11)
B(a,b,x)=\mathop{\mathrm{B}_{{x}}\/}\nolimits\!\left(a,b\right)
notation used by Magnus et al. (1966); §8.1
(with \mathop{\mathrm{B}_{{x}}\/}\nolimits\!\left(a,b\right): incomplete beta function)
\mathop{\mathrm{bei}_{{\nu}}\/}\nolimits\!\left(x\right)
Kelvin function; (10.61.1)
\mathop{\mathrm{ber}_{{\nu}}\/}\nolimits\!\left(x\right)
Kelvin function; (10.61.1)
\mathop{\beta _{{k}}\/}\nolimits
kth complex zero of Airy \mathop{\mathrm{Bi}\/}\nolimits; §9.9(i)
\mathop{\beta^{{\prime}}_{{k}}\/}\nolimits
kth complex zero of Airy {\mathop{\mathrm{Bi}\/}\nolimits^{{\prime}}}; §9.9(i)
\mathop{\beta _{{n}}\/}\nolimits\!\left(x,q\right)
q-Bernoulli polynomial; (17.3.7)
\mathop{\mathrm{Bi}\/}\nolimits\!\left(z\right)
Airy function; §9.2(i)