What's New
About the Project
NIST
Notations

Notations B

*A♦B♦CDEFGHIJKLMNOPQRSTUVWXYZ
B n
Bernoulli numbers; §24.2(i)
b k
kth zero of Airy Bi; §9.9(i)
b k
kth zero of Airy Bi; §9.9(i)
B n ( )
generalized Bernoulli numbers; §24.16(i)
B n - k ( - k ) = S ( n , k ) / ( n k )
notation used by Milne-Thomson (1933); §26.1
(with S(n,k): Stirling number of the second kind and (mn): binomial coefficient)
B n - k ( n ) = s ( n , k ) / ( n - 1 k - 1 )
notation used by Milne-Thomson (1933); §26.1
(with s(n,k): Stirling number of the first kind and (mn): binomial coefficient)
B n ( x )
Nörlund polynomials; §24.16(i)
B ( n )
Bell number; §26.7(i)
B n ( x )
Bernoulli polynomials; §24.2(i)
B ν ( T )
Bessel function of matrix argument (second kind); 35.5.3
B n ( z )
generalized Airy function; §9.13(i)
b n ( q )
eigenvalues of Mathieu equation; §28.2(v)
B ~ n ( x )
periodic Bernoulli functions; §24.2(iii)
B k ( z , p )
generalized Airy function; §9.13(ii)
B n ( ) ( x )
generalized Bernoulli polynomials; §24.16(i)
b ν n ( k 2 )
eigenvalues of Lamé’s equation; §29.3(i)
B ( a , b )
beta function; 5.12.1
B m ( a , b )
multivariate beta function; 35.3.3
B x ( a , b )
incomplete beta function; 8.17.1
B q ( a , b )
q-beta function; 5.18.11
B ( a , b , x ) = B x ( a , b )
notation used by Magnus et al. (1966); §8.1
(with Bx(a,b): incomplete beta function)
bei ν ( x )
Kelvin function; 10.61.1
ber ν ( x )
Kelvin function; 10.61.1
β k
kth complex zero of Airy Bi; §9.9(i)
β k
kth complex zero of Airy Bi; §9.9(i)
β n ( x , q )
q-Bernoulli polynomial; 17.3.7
Bi ( z )
Airy function; §9.2(i)