Notations *Notations B
Notations A
*♦A♦BCDEFGHIJKLMNOPQRSTUVWXYZ
\forall
for every; Common Notations and Definitions
A
Glaisher’s constant; (5.17.6)
\mathop{a_{{k}}\/}\nolimits
kth zero of Airy \mathop{\mathrm{Ai}\/}\nolimits; §9.9(i)
\mathop{a^{{\prime}}_{{k}}\/}\nolimits
kth zero of Airy {\mathop{\mathrm{Ai}\/}\nolimits^{{\prime}}}; §9.9(i)
A(x)=3^{{-\ifrac{1}{3}}}\pi\mathop{\mathrm{Ai}\/}\nolimits\!\left(-3^{{-\ifrac{1}{3}}}x\right)
notation used by Szegö (1967); §9.1
(with \mathop{\mathrm{Ai}\/}\nolimits\!\left(z\right): Airy function)
\mathop{\mathbf{A}_{{\nu}}\/}\nolimits\!\left(z\right)
Anger–Weber function; (11.10.4)
\mathop{A_{{\nu}}\/}\nolimits\!\left(\mathbf{T}\right)
Bessel function of matrix argument (first kind); §35.5(i)
\mathop{A_{{n}}\/}\nolimits\!\left(z\right)
generalized Airy function; §9.13(i)
\mathop{a_{{n}}\/}\nolimits\!\left(q\right)
eigenvalues of Mathieu equation; §28.2(v)
\mathop{A_{{k}}\/}\nolimits\!\left(z,p\right)
generalized Airy function; §9.13(ii)
\mathop{A_{{m,s}}\/}\nolimits\!\left(q\right)
q-Euler number; (17.3.8)
\mathop{a_{{m,s}}\/}\nolimits\!\left(q\right)
q-Stirling number; (17.3.9)
\mathop{a^{{n}}_{{\nu}}\/}\nolimits\!\left(k^{2}\right)
eigenvalues of Lamé’s equation; §29.3(i)
\mathop{\mathrm{Ai}\/}\nolimits\!\left(z\right)
Airy function; §9.2(i)
\mathop{\mathrm{am}\/}\nolimits\left(x,k\right)
Jacobi’s amplitude function; (22.16.1)
\mathop{\mathrm{arccd}\/}\nolimits\!\left(x,k\right)
inverse Jacobian elliptic function; §22.15(i)
\mathop{\mathrm{arccn}\/}\nolimits\!\left(x,k\right)
inverse Jacobian elliptic function; §22.15(i)
\mathop{\mathrm{Arccos}\/}\nolimits z
general arccosine function; (4.23.2)
\mathop{\mathrm{arccos}\/}\nolimits z
arccosine function; §4.23(ii)
\mathop{\mathrm{Arccosh}\/}\nolimits z
general inverse hyperbolic cosine function; (4.37.2)
\mathop{\mathrm{arccosh}\/}\nolimits z
inverse hyperbolic cosine function; §4.37(ii)
\mathop{\mathrm{Arccot}\/}\nolimits z
general arccotangent function; (4.23.6)
\mathop{\mathrm{arccot}\/}\nolimits z
arccotangent function; (4.23.9)
\mathop{\mathrm{Arccoth}\/}\nolimits z
general inverse hyperbolic cotangent function; (4.37.6)
\mathop{\mathrm{arccoth}\/}\nolimits z
inverse hyperbolic cotangent function; (4.37.9)
\mathop{\mathrm{arccs}\/}\nolimits\!\left(x,k\right)
inverse Jacobian elliptic function; §22.15(i)
\mathop{\mathrm{Arccsc}\/}\nolimits z
general arccosecant function; (4.23.4)
\mathop{\mathrm{arccsc}\/}\nolimits z
arccosecant function; (4.23.7)
\mathop{\mathrm{Arccsch}\/}\nolimits z
general inverse hyperbolic cosecant function; (4.37.4)
\mathop{\mathrm{arccsch}\/}\nolimits z
inverse hyperbolic cosecant function; (4.37.7)
\mathop{\mathrm{arcdc}\/}\nolimits\!\left(x,k\right)
inverse Jacobian elliptic function; §22.15(i)
\mathop{\mathrm{arcdn}\/}\nolimits\!\left(x,k\right)
inverse Jacobian elliptic function; §22.15(i)
\mathop{\mathrm{arcds}\/}\nolimits\!\left(x,k\right)
inverse Jacobian elliptic function; §22.15(i)
\mathop{\mathrm{arcnc}\/}\nolimits\!\left(x,k\right)
inverse Jacobian elliptic function; §22.15(i)
\mathop{\mathrm{arcnd}\/}\nolimits\!\left(x,k\right)
inverse Jacobian elliptic function; §22.15(i)
\mathop{\mathrm{arcns}\/}\nolimits\!\left(x,k\right)
inverse Jacobian elliptic function; §22.15(i)
\mathop{\mathrm{arcsc}\/}\nolimits\!\left(x,k\right)
inverse Jacobian elliptic function; §22.15(i)
\mathop{\mathrm{arcsd}\/}\nolimits\!\left(x,k\right)
inverse Jacobian elliptic function; §22.15(i)
\mathop{\mathrm{Arcsec}\/}\nolimits z
general arcsecant function; (4.23.5)
\mathop{\mathrm{arcsec}\/}\nolimits z
arcsecant function; (4.23.8)
\mathop{\mathrm{Arcsech}\/}\nolimits z
general inverse hyperbolic secant function; (4.37.5)
\mathop{\mathrm{arcsech}\/}\nolimits z
inverse hyperbolic secant function; (4.37.8)
\mathop{\mathrm{Arcsin}\/}\nolimits z
general arcsine function; (4.23.1)
\mathop{\mathrm{arcsin}\/}\nolimits z
arcsine function; §4.23(ii)
\mathop{\mathrm{Arcsinh}\/}\nolimits z
general inverse hyperbolic sine function; (4.37.1)
\mathop{\mathrm{arcsinh}\/}\nolimits z
inverse hyperbolic sine function; §4.37(ii)
\mathop{\mathrm{arcsn}\/}\nolimits\!\left(x,k\right)
inverse Jacobian elliptic function; §22.15(i)
\mathop{\mathrm{Arctan}\/}\nolimits z
general arctangent function; (4.23.3)
\mathop{\mathrm{arctan}\/}\nolimits z
arctangent function; §4.23(ii)
\mathop{\mathrm{Arctanh}\/}\nolimits z
general inverse hyperbolic tangent function; (4.37.3)
\mathop{\mathrm{arctanh}\/}\nolimits z
inverse hyperbolic tangent function; §4.37(ii)