# Notations A

*♦A♦BCDEFGHIJKLMNOPQRSTUVWXYZ
$\forall$
for every; Common Notations and Definitions
$A$
Glaisher’s constant; 5.17.6
$a_{\NVar{k}}$
$k$th zero of Airy $\mathop{\mathrm{Ai}\/}\nolimits$; §9.9(i)
$a^{\prime}_{\NVar{k}}$
$k$th zero of Airy $\mathop{\mathrm{Ai}\/}\nolimits'$; §9.9(i)
$A(\NVar{x})=3^{-\ifrac{1}{3}}\pi\mathop{\mathrm{Ai}\/}\nolimits\!\left(-3^{-% \ifrac{1}{3}}x\right)$
notation used by Szegő (1967); §9.1
$\mathop{A_{\NVar{m},\NVar{s}}\/}\nolimits\!\left(\NVar{q}\right)$
$q$-Euler number; 17.3.8
$\mathop{a_{\NVar{m},\NVar{s}}\/}\nolimits\!\left(\NVar{q}\right)$
$q$-Stirling number; 17.3.9
$\mathop{a_{\NVar{n}}\/}\nolimits\!\left(\NVar{q}\right)$
eigenvalues of Mathieu equation; §28.2(v)
$\mathop{A_{\NVar{n}}\/}\nolimits\!\left(\NVar{z}\right)$
generalized Airy function; §9.13(i)
$\mathop{A_{\NVar{\nu}}\/}\nolimits\!\left(\NVar{\mathbf{T}}\right)$
Bessel function of matrix argument (first kind); §35.5(i)
$\mathop{\mathbf{A}_{\NVar{\nu}}\/}\nolimits\!\left(\NVar{z}\right)$
Anger–Weber function; 11.10.4
$\mathop{a^{\NVar{n}}_{\NVar{\nu}}\/}\nolimits\!\left(\NVar{k^{2}}\right)$
eigenvalues of Lamé’s equation; §29.3(i)
$\mathop{A_{\NVar{k}}\/}\nolimits\!\left(\NVar{z},\NVar{p}\right)$
generalized Airy function; §9.13(ii)
$\mathop{\mathrm{Ai}\/}\nolimits\!\left(\NVar{z}\right)$
Airy function; §9.2(i)
$\mathop{\mathrm{am}\/}\nolimits\left(\NVar{x},\NVar{k}\right)$
Jacobi’s amplitude function; 22.16.1
$\mathop{\mathrm{arccd}\/}\nolimits\!\left(\NVar{x},\NVar{k}\right)$
inverse Jacobian elliptic function; §22.15(i)
$\mathop{\mathrm{arccn}\/}\nolimits\!\left(\NVar{x},\NVar{k}\right)$
inverse Jacobian elliptic function; §22.15(i)
$\mathop{\mathrm{Arccos}\/}\nolimits\NVar{z}$
general arccosine function; 4.23.2
$\mathop{\mathrm{arccos}\/}\nolimits\NVar{z}$
arccosine function; §4.23(ii)
$\mathop{\mathrm{Arccosh}\/}\nolimits\NVar{z}$
general inverse hyperbolic cosine function; 4.37.2
$\mathop{\mathrm{arccosh}\/}\nolimits\NVar{z}$
inverse hyperbolic cosine function; §4.37(ii)
$\mathop{\mathrm{Arccot}\/}\nolimits\NVar{z}$
general arccotangent function; 4.23.6
$\mathop{\mathrm{arccot}\/}\nolimits\NVar{z}$
arccotangent function; 4.23.9
$\mathop{\mathrm{Arccoth}\/}\nolimits\NVar{z}$
general inverse hyperbolic cotangent function; 4.37.6
$\mathop{\mathrm{arccoth}\/}\nolimits\NVar{z}$
inverse hyperbolic cotangent function; 4.37.9
$\mathop{\mathrm{arccs}\/}\nolimits\!\left(\NVar{x},\NVar{k}\right)$
inverse Jacobian elliptic function; §22.15(i)
$\mathop{\mathrm{Arccsc}\/}\nolimits\NVar{z}$
general arccosecant function; 4.23.4
$\mathop{\mathrm{arccsc}\/}\nolimits\NVar{z}$
arccosecant function; 4.23.7
$\mathop{\mathrm{Arccsch}\/}\nolimits\NVar{z}$
general inverse hyperbolic cosecant function; 4.37.4
$\mathop{\mathrm{arccsch}\/}\nolimits\NVar{z}$
inverse hyperbolic cosecant function; 4.37.7
$\mathop{\mathrm{arcdc}\/}\nolimits\!\left(\NVar{x},\NVar{k}\right)$
inverse Jacobian elliptic function; §22.15(i)
$\mathop{\mathrm{arcdn}\/}\nolimits\!\left(\NVar{x},\NVar{k}\right)$
inverse Jacobian elliptic function; §22.15(i)
$\mathop{\mathrm{arcds}\/}\nolimits\!\left(\NVar{x},\NVar{k}\right)$
inverse Jacobian elliptic function; §22.15(i)
$\mathop{\mathrm{arcnc}\/}\nolimits\!\left(\NVar{x},\NVar{k}\right)$
inverse Jacobian elliptic function; §22.15(i)
$\mathop{\mathrm{arcnd}\/}\nolimits\!\left(\NVar{x},\NVar{k}\right)$
inverse Jacobian elliptic function; §22.15(i)
$\mathop{\mathrm{arcns}\/}\nolimits\!\left(\NVar{x},\NVar{k}\right)$
inverse Jacobian elliptic function; §22.15(i)
$\mathop{\mathrm{arcsc}\/}\nolimits\!\left(\NVar{x},\NVar{k}\right)$
inverse Jacobian elliptic function; §22.15(i)
$\mathop{\mathrm{arcsd}\/}\nolimits\!\left(\NVar{x},\NVar{k}\right)$
inverse Jacobian elliptic function; §22.15(i)
$\mathop{\mathrm{Arcsec}\/}\nolimits\NVar{z}$
general arcsecant function; 4.23.5
$\mathop{\mathrm{arcsec}\/}\nolimits\NVar{z}$
arcsecant function; 4.23.8
$\mathop{\mathrm{Arcsech}\/}\nolimits\NVar{z}$
general inverse hyperbolic secant function; 4.37.5
$\mathop{\mathrm{arcsech}\/}\nolimits\NVar{z}$
inverse hyperbolic secant function; 4.37.8
$\mathop{\mathrm{Arcsin}\/}\nolimits\NVar{z}$
general arcsine function; 4.23.1
$\mathop{\mathrm{arcsin}\/}\nolimits\NVar{z}$
arcsine function; §4.23(ii)
$\mathop{\mathrm{Arcsinh}\/}\nolimits\NVar{z}$
general inverse hyperbolic sine function; 4.37.1
$\mathop{\mathrm{arcsinh}\/}\nolimits\NVar{z}$
inverse hyperbolic sine function; §4.37(ii)
$\mathop{\mathrm{arcsn}\/}\nolimits\!\left(\NVar{x},\NVar{k}\right)$
inverse Jacobian elliptic function; §22.15(i)
$\mathop{\mathrm{Arctan}\/}\nolimits\NVar{z}$
general arctangent function; 4.23.3
$\mathop{\mathrm{arctan}\/}\nolimits\NVar{z}$
arctangent function; §4.23(ii)
$\mathop{\mathrm{Arctanh}\/}\nolimits\NVar{z}$
general inverse hyperbolic tangent function; 4.37.3
$\mathop{\mathrm{arctanh}\/}\nolimits\NVar{z}$
inverse hyperbolic tangent function; §4.37(ii)