9.7 Asymptotic Expansions9.9 Zeros

§9.8 Modulus and Phase

Contents

§9.8(i) Definitions

Throughout this section x is real and nonpositive.

Graphs of \mathop{M\/}\nolimits\!\left(x\right) and \mathop{N\/}\nolimits\!\left(x\right) are included in §9.3(i). The branches of \mathop{\theta\/}\nolimits\!\left(x\right) and \mathop{\phi\/}\nolimits\!\left(x\right) are continuous and fixed by \mathop{\theta\/}\nolimits\!\left(0\right)=-\mathop{\phi\/}\nolimits\!\left(0\right)=\tfrac{1}{6}\pi. (These definitions of \mathop{\theta\/}\nolimits\!\left(x\right) and \mathop{\phi\/}\nolimits\!\left(x\right) differ from Abramowitz and Stegun (1964, Chapter 10), and agree more closely with those used in Miller (1946) and Olver (1997b, Chapter 11).)

§9.8(ii) Identities

§9.8(iii) Monotonicity

As x increases from -\infty to 0 each of the functions \mathop{M\/}\nolimits\!\left(x\right), {\mathop{M\/}\nolimits^{{\prime}}}\!\left(x\right), |x|^{{-1/4}}\mathop{N\/}\nolimits\!\left(x\right), \mathop{M\/}\nolimits\!\left(x\right)\mathop{N\/}\nolimits\!\left(x\right), {\mathop{\theta\/}\nolimits^{{\prime}}}\!\left(x\right), {\mathop{\phi\/}\nolimits^{{\prime}}}\!\left(x\right) is increasing, and each of the functions |x|^{{1/4}}\mathop{M\/}\nolimits\!\left(x\right), \mathop{\theta\/}\nolimits\!\left(x\right), \mathop{\phi\/}\nolimits\!\left(x\right) is decreasing.

§9.8(iv) Asymptotic Expansions

In (9.8.20) and (9.8.21) the remainder after n terms does not exceed the (n+1)th term in absolute value and is of the same sign, provided that n\geq 0 for (9.8.20) and n\geq 1 for (9.8.21).

For higher terms in (9.8.22) and (9.8.23) see Fabijonas et al. (2004). Also, approximate values (25S) of the coefficients of the powers {x^{{-15}}}, {x^{{-18}}}, \ldots, {x^{{-56}}} are available in Sherry (1959).