23.1 Special Notation23.3 Differential Equations

§23.2 Definitions and Periodic Properties

Contents

§23.2(i) Lattices

If \omega _{1} and \omega _{3} are nonzero real or complex numbers such that \imagpart{(\omega _{3}/\omega _{1})}>0, then the set of points 2m\omega _{1}+2n\omega _{3}, with m,n\in\Integer, constitutes a lattice \mathbb{L} with 2\omega _{1} and 2\omega _{3} lattice generators.

The generators of a given lattice \mathbb{L} are not unique. For example, if

23.2.1\omega _{1}+\omega _{2}+\omega _{3}=0,

then 2\omega _{2}, 2\omega _{3} are generators, as are 2\omega _{2}, 2\omega _{1}. In general, if

23.2.2
\chi _{1}=a\omega _{1}+b\omega _{3},
\chi _{3}=c\omega _{1}+d\omega _{3},

where a,b,c,d are integers, then 2\chi _{1}, 2\chi _{3} are generators of \mathbb{L} iff

23.2.3ad-bc=1.

§23.2(ii) Weierstrass Elliptic Functions

23.2.4\mathop{\wp\/}\nolimits\!\left(z\right)=\frac{1}{z^{2}}+\sum _{{w\in\mathbb{L}\setminus\{ 0\}}}\left(\frac{1}{(z-w)^{2}}-\frac{1}{w^{2}}\right),
23.2.5\mathop{\zeta\/}\nolimits\!\left(z\right)=\frac{1}{z}+\sum _{{w\in\mathbb{L}\setminus\{ 0\}}}\left(\frac{1}{z-w}+\frac{1}{w}+\frac{z}{w^{2}}\right),
23.2.6\mathop{\sigma\/}\nolimits\!\left(z\right)=z\prod _{{w\in\mathbb{L}\setminus\{ 0\}}}\left(\left(1-\frac{z}{w}\right)\mathop{\exp\/}\nolimits\!\left(\frac{z}{w}+\frac{z^{2}}{2w^{2}}\right)\right).

The double series and double product are absolutely and uniformly convergent in compact sets in \Complex that do not include lattice points. Hence the order of the terms or factors is immaterial.

When z\notin\mathbb{L} the functions are related by

23.2.7\mathop{\wp\/}\nolimits\!\left(z\right)=-{\mathop{\zeta\/}\nolimits^{{\prime}}}\!\left(z\right),
23.2.8\mathop{\zeta\/}\nolimits\!\left(z\right)=\ifrac{{\mathop{\sigma\/}\nolimits^{{\prime}}}\!\left(z\right)}{\mathop{\sigma\/}\nolimits\!\left(z\right)}.

\mathop{\wp\/}\nolimits\!\left(z\right) and \mathop{\zeta\/}\nolimits\!\left(z\right) are meromorphic functions with poles at the lattice points. \mathop{\wp\/}\nolimits\!\left(z\right) is even and \mathop{\zeta\/}\nolimits\!\left(z\right) is odd. The poles of \mathop{\wp\/}\nolimits\!\left(z\right) are double with residue 0; the poles of \mathop{\zeta\/}\nolimits\!\left(z\right) are simple with residue 1. The function \mathop{\sigma\/}\nolimits\!\left(z\right) is entire and odd, with simple zeros at the lattice points. When it is important to display the lattice with the functions they are denoted by \mathop{\wp\/}\nolimits\!\left(z|\mathbb{L}\right), \mathop{\zeta\/}\nolimits\!\left(z|\mathbb{L}\right), and \mathop{\sigma\/}\nolimits\!\left(z|\mathbb{L}\right), respectively.

§23.2(iii) Periodicity

If 2\omega _{1}, 2\omega _{3} is any pair of generators of \mathbb{L}, and \omega _{2} is defined by (23.2.1), then

23.2.9\mathop{\wp\/}\nolimits\!\left(z+2\omega _{j}\right)=\mathop{\wp\/}\nolimits\!\left(z\right),j=1,2,3.

Hence \mathop{\wp\/}\nolimits\!\left(z\right) is an elliptic function, that is, \mathop{\wp\/}\nolimits\!\left(z\right) is meromorphic and periodic on a lattice; equivalently, \mathop{\wp\/}\nolimits\!\left(z\right) is meromorphic and has two periods whose ratio is not real. We also have

23.2.10{\mathop{\wp\/}\nolimits^{{\prime}}}\!\left(\omega _{j}\right)=0,j=1,2,3.

The function \mathop{\zeta\/}\nolimits\!\left(z\right) is quasi-periodic: for j=1,2,3,

23.2.11\mathop{\zeta\/}\nolimits\!\left(z+2\omega _{j}\right)=\mathop{\zeta\/}\nolimits\!\left(z\right)+2\eta _{j},

where

23.2.12\eta _{j}=\mathop{\zeta\/}\nolimits\!\left(\omega _{j}\right).

Also,

23.2.13\eta _{1}+\eta _{2}+\eta _{3}=0,
23.2.14\eta _{3}\omega _{2}-\eta _{2}\omega _{3}=\eta _{2}\omega _{1}-\eta _{1}\omega _{2}=\eta _{1}\omega _{3}-\eta _{3}\omega _{1}=\tfrac{1}{2}\pi i.

For further quasi-periodic properties of the \mathop{\sigma\/}\nolimits-function see Lawden (1989, §6.2).