# Notations N

*ABCDEFGHIJKLM♦N♦OPQRSTUVWXYZ
$\cap$
intersection; Common Notations and Definitions
$\mathbb{N}$
set of all positive integers; Common Notations and Definitions
$\mathcal{N}$
winding number; 1.9.32
$N\left(\NVar{z}\right)$
Airy modulus function; 9.8.7
$N_{\NVar{\nu}}\left(\NVar{x}\right)$
modulus of derivatives of Bessel functions; 10.18.2
$N_{\NVar{\nu}}(\NVar{z})=Y_{\nu}\left(z\right)$
common alternative notation; §10.1
$N(\NVar{n},\NVar{k})$
Narayana number; 26.6.3
$\nabla_{\NVar{x}}$
backward difference; §18.1(i)
$\operatorname{nc}\left(\NVar{z},\NVar{k}\right)$
Jacobian elliptic function; 22.2.5
$\operatorname{nd}\left(\NVar{z},\NVar{k}\right)$
Jacobian elliptic function; 22.2.6
$\mathrm{Ne}_{\NVar{n}}^{(1,2)}(\NVar{z},\NVar{q})=\sqrt{\tfrac{1}{2}\pi}g_{% \mathit{o},n}(h)\mathrm{se}_{n}'\left(0,q\right){\mathrm{Ms}^{(3,4)}_{n}}\left% (z,h\right)$
notation used by Arscott (1964b), McLachlan (1947); §28.1
$\operatorname{ns}\left(\NVar{z},\NVar{k}\right)$
Jacobian elliptic function; 22.2.4
$\nu\left(\NVar{n}\right)$
number of distinct primes dividing $n$; §27.2(i)