Notations CNotations E
Notations D
*ABC♦D♦EFGHIJKLMNOPQRSTUVWXYZ
\mathcal{D}(I)
test function space; §1.16(i)
\mathop{D\/}\nolimits\!\left(k\right)
complete elliptic integral of Legendre’s type; (19.2.8)
dx
differential of x; §1.4(iv)
\mathop{d\/}\nolimits\!\left(n\right)
divisor function; (27.2.9)
d(n)
derangement number; §26.13
\partial x
partial differential of x; (1.5.3)
\mathcal{D}_{q}
q-differential operator; (17.2.41)
\mathop{D_{{\nu}}\/}\nolimits\!\left(z\right)
parabolic cylinder function; §12.1
\mathop{d_{{k}}\/}\nolimits\!\left(n\right)
divisor function; §27.2(i)
{d}_{q}x
q-differential; §17.2(v)
D^{\alpha}
fractional derivative; (1.15.51)
D(m,n)
Dellanoy number; (26.6.1)
\mathop{D\/}\nolimits\!\left(\phi,k\right)
incomplete elliptic integral of Legendre’s type; (19.2.6)
\mathfrak{D}_{{lm}}(\theta,\phi)\propto\mathop{Y_{{{l},{m}}}\/}\nolimits\!\left(\theta,\phi\right)
alternative notation; §14.30(i)
(with \mathop{Y_{{{l},{m}}}\/}\nolimits\!\left(\theta,\phi\right): spherical harmonic)
\mathop{\mathrm{D}_{{j}}\/}\nolimits\!\left(\nu,\mu,z\right)
cross-products of modified Mathieu functions and their derivatives; (28.28.24)
\mathop{\mathrm{dc}\/}\nolimits\left(z,k\right)
Jacobian elliptic function; (22.2.8)
\mathop{\mathrm{Dc}_{{j}}\/}\nolimits\!\left(n,m,z\right)
cross-products of radial Mathieu functions and their derivatives; (28.28.39)
\frac{df}{dx}
derivative of f with respect to x; (1.4.4)
\frac{\partial f}{\partial x}
partial derivative of f with respect to x; (1.5.3)
\frac{\partial(f,g)}{\partial(x,y)}
Jacobian; (1.5.38)
\mathop{\mathit{dE}^{{m}}_{{2n+1}}\/}\nolimits\!\left(z,k^{2}\right)
Lamé polynomial; (29.12.4)
\Delta
forward difference operator; §3.6(i)
\delta _{{j,k}}
Kronecker delta; Common Notations and Definitions
\mathop{\Delta\/}\nolimits\!\left(\tau\right)
discriminant function; (27.14.16)
\mathop{\delta\/}\nolimits\!\left(x-a\right)
Dirac delta (or Dirac delta function); §1.17(i)
\delta _{{x}}
central difference; §18.1(i)
\Delta _{{x}}
forward difference; §18.1(i)
\det
determinant; §1.3(i)
\divergence
divergence of vector-valued function; (1.6.21)
\mathrm{dn}(z\mathpunct{|}m)=\mathop{\mathrm{dn}\/}\nolimits\left(z,\sqrt{m}\right)
alternative notation; §22.1
(with \mathop{\mathrm{dn}\/}\nolimits\left(z,k\right): Jacobian elliptic function)
\mathop{\mathrm{dn}\/}\nolimits\left(z,k\right)
Jacobian elliptic function; (22.2.6)
\mathop{\mathrm{ds}\/}\nolimits\left(z,k\right)
Jacobian elliptic function; (22.2.7)
\mathop{\mathrm{Ds}_{{j}}\/}\nolimits\!\left(n,m,z\right)
cross-products of radial Mathieu functions and their derivatives; (28.28.35)
\mathop{\mathrm{Dsc}_{{j}}\/}\nolimits\!\left(n,m,z\right)
cross-products of radial Mathieu functions and their derivatives; (28.28.40)