27.4 Euler Products and Dirichlet Series27.6 Divisor Sums

§27.5 Inversion Formulas

If a Dirichlet series F(s) generates f(n), and G(s) generates g(n), then the product F(s)G(s) generates

27.5.1h(n)=\sum _{{d\divides n}}f(d)g\left(\frac{n}{d}\right),

called the Dirichlet product (or convolution) of f and g. The set of all number-theoretic functions f with f(1)\neq 0 forms an abelian group under Dirichlet multiplication, with the function \left\lfloor 1/n\right\rfloor in (27.2.5) as identity element; see Apostol (1976, p. 129). The multiplicative functions are a subgroup of this group. Generating functions yield many relations connecting number-theoretic functions. For example, the equation \mathop{\zeta\/}\nolimits\!\left(s\right)\cdot(\ifrac{1}{\mathop{\zeta\/}\nolimits\!\left(s\right)})=1 is equivalent to the identity

27.5.2\sum _{{d\divides n}}\mathop{\mu\/}\nolimits\!\left(d\right)=\left\lfloor\frac{1}{n}\right\rfloor,

which, in turn, is the basis for the Möbius inversion formula relating sums over divisors:

27.5.3g(n)=\sum _{{d\divides n}}f(d)\Longleftrightarrow f(n)=\sum _{{d\divides n}}g(d)\mathop{\mu\/}\nolimits\!\left(\frac{n}{d}\right).

Special cases of Möbius inversion pairs are:

27.5.4n=\sum _{{d\divides n}}\mathop{\phi\/}\nolimits\!\left(d\right)\Longleftrightarrow\mathop{\phi\/}\nolimits\!\left(n\right)=\sum _{{d\divides n}}d\mathop{\mu\/}\nolimits\!\left(\frac{n}{d}\right),
27.5.5\mathop{\mathrm{log}\,\/}\nolimits n=\sum _{{d\divides n}}\mathop{\Lambda\/}\nolimits\!\left(d\right)\Longleftrightarrow\mathop{\Lambda\/}\nolimits\!\left(n\right)=\sum _{{d\divides n}}(\mathop{\mathrm{log}\,\/}\nolimits d)\mathop{\mu\/}\nolimits\!\left(\frac{n}{d}\right).

Other types of Möbius inversion formulas include:

27.5.6G(x)=\sum _{{n\leq x}}F\left(\frac{x}{n}\right)\Longleftrightarrow F(x)=\sum _{{n\leq x}}\mathop{\mu\/}\nolimits\!\left(n\right)G\left(\frac{x}{n}\right),
27.5.7G(x)=\sum _{{m=1}}^{\infty}\frac{F(mx)}{m^{s}}\Longleftrightarrow F(x)=\sum _{{m=1}}^{\infty}\mathop{\mu\/}\nolimits\!\left(m\right)\frac{G(mx)}{m^{s}},
27.5.8g(n)=\prod _{{d\divides n}}f(d)\Longleftrightarrow f(n)=\prod _{{d\divides n}}\left(g\left(\frac{n}{d}\right)\right)^{{\mathop{\mu\/}\nolimits\!\left(d\right)}}.

For a general theory of Möbius inversion with applications to combinatorial theory see Rota (1964).