§18.9 Recurrence Relations and Derivatives
Contents
- §18.9(i) Recurrence Relations
- §18.9(ii) Contiguous Relations in the Parameters and the Degree
- §18.9(iii) Derivatives
§18.9(i) Recurrence Relations
- Notes:
- For (18.9.1), (18.9.2) see
Szegö (1975, (4.5.1)).
For Table 18.9.1, Rows 2, 9, 10, see
Szegö (1975, (4.7.17), (5.1.10), (5.5.8)), respectively;
Rows 3 and 4 are rewritings of elementary trigonometric identities in
view of (18.5.1), (18.5.2);
Row 7 is the special case
of
(18.9.2). - Keywords:
- Jacobi polynomials, classical orthogonal polynomials
- Referenced by:
- §18.5(iv), §3.5(vi)
- Permalink:
- http://dlmf.nist.gov/18.9.i
18.9.1
- Symbols:
-
: nonnegative integer,
: polynomial of degree
,
: real variable,
: coefficient,
: coefficient and
: coefficient
- Referenced by:
- §18.21(ii), §18.9(i), Table 18.9.1
- Permalink:
- http://dlmf.nist.gov/18.9.E1
- Encodings:
- TeX, pMML, png
For
,
18.9.2
- Symbols:
-
: nonnegative integer,
: coefficient,
: coefficient and
: coefficient
- Referenced by:
- ¶ ‣ §18.30, §18.9(i)
- Permalink:
- http://dlmf.nist.gov/18.9.E2
- Encodings:
- TeX, TeX, TeX, pMML, pMML, pMML, png, png, png
For the other classical OP’s see Table 18.9.1; compare also §18.2(iv).
Table 18.9.1: Classical OP’s: recurrence relations (18.9.1).
| 0 | |||
| 0 | 1 | ||
| 2 | 0 | 1 | |
| 1 | |||
| 4 | −2 | 1 | |
| 0 | |||
| 2 | 0 | ||
| 1 | 0 |
- Symbols:
-
: Chebyshev polynomial of the first kind,
: Chebyshev polynomial of the second kind,
: Hermite polynomial,
: Hermite polynomial,
: Kronecker delta,
: Legendre polynomial,
: Laguerre (or generalized Laguerre) polynomial,
: shifted Chebyshev polynomial of the first kind,
: shifted Chebyshev polynomial of the second kind,
: shifted Legendre polynomial,
: ultraspherical (or Gegenbauer) polynomial,
: nonnegative integer,
: polynomial of degree
,
: real variable,
: coefficient,
: coefficient and
: coefficient
- A&S Ref:
- 22.7.1, 22.7.3, 22.7.4, 22.7.5, 22.7.8, 22.7.9, 22.7.10, 22.7.11, 22.7.12, 22.7.13, 22.7.14
- Keywords:
- Chebyshev polynomials, Hermite polynomials, Laguerre polynomials, Legendre polynomials, ultraspherical polynomials
- Referenced by:
- §18.21(ii), §18.9(i), §18.9(i), Version 1.0.1 (June 27, 2011)
- Permalink:
- http://dlmf.nist.gov/18.9.T1
- Errata (effective with 1.0.1):
-
The coefficient
for
in the first row of this table
originally omitted the parentheses and was given as
, instead
of
.
Reported 2010-09-16 by Kendall Atkinson
§18.9(ii) Contiguous Relations in the Parameters and the Degree
- Notes:
- For (18.9.3)–(18.9.5) see Rainville (1960, §138, (17), (16), (14)). For (18.9.6) see Szegö (1975, (4.5.4)). For (18.9.7) see Szegö (1975, (4.7.29)). For (18.9.8) substitute (18.7.15) or (18.7.16); the resulting formula is a special case of Rainville (1960, §138, (11)). (18.9.9)–(18.9.12) are rewritings of elementary trigonometric identities in view of (18.5.1)–(18.5.4). For (18.9.13) see Szegö (1975, (5.1.13)). For (18.9.14) see Szegö (1975, (5.1.14)).
- Keywords:
- classical orthogonal polynomials
- Permalink:
- http://dlmf.nist.gov/18.9.ii
¶ Jacobi
18.9.3
- Symbols:
-
: Jacobi polynomial,
: nonnegative integer and
: real variable
- A&S Ref:
- 22.7.20
- Referenced by:
- §18.9(ii)
- Permalink:
- http://dlmf.nist.gov/18.9.E3
- Encodings:
- TeX, pMML, png
18.9.4
- Symbols:
-
: Jacobi polynomial,
: nonnegative integer and
: real variable
- A&S Ref:
- 22.7.17
- Permalink:
- http://dlmf.nist.gov/18.9.E4
- Encodings:
- TeX, pMML, png
18.9.5
- Symbols:
-
: Jacobi polynomial,
: nonnegative integer and
: real variable
- A&S Ref:
- 22.7.19
- Referenced by:
- ¶ ‣ §18.9(ii), §18.9(ii)
- Permalink:
- http://dlmf.nist.gov/18.9.E5
- Encodings:
- TeX, pMML, png
18.9.6
- Symbols:
-
: Jacobi polynomial,
: nonnegative integer and
: real variable
- A&S Ref:
- 22.7.16
- Referenced by:
- ¶ ‣ §18.9(ii), §18.9(ii)
- Permalink:
- http://dlmf.nist.gov/18.9.E6
- Encodings:
- TeX, pMML, png
and a similar pair to (18.9.5) and (18.9.6) by symmetry; compare the second row in Table 18.6.1.
¶ Ultraspherical
18.9.7
- Symbols:
-
: ultraspherical (or Gegenbauer) polynomial,
: nonnegative integer and
: real variable
- Referenced by:
- §18.9(ii)
- Permalink:
- http://dlmf.nist.gov/18.9.E7
- Encodings:
- TeX, pMML, png
18.9.8
- Symbols:
-
: ultraspherical (or Gegenbauer) polynomial,
: nonnegative integer and
: real variable
- Referenced by:
- §18.9(ii)
- Permalink:
- http://dlmf.nist.gov/18.9.E8
- Encodings:
- TeX, pMML, png
¶ Chebyshev
18.9.9
- Symbols:
-
: Chebyshev polynomial of the first kind,
: Chebyshev polynomial of the second kind,
: nonnegative integer and
: real variable
- A&S Ref:
- 22.5.8
- Referenced by:
- ¶ ‣ §18.7(i), §18.9(ii)
- Permalink:
- http://dlmf.nist.gov/18.9.E9
- Encodings:
- TeX, pMML, png
18.9.10
- Symbols:
-
: Chebyshev polynomial of the first kind,
: Chebyshev polynomial of the second kind,
: nonnegative integer and
: real variable
- Permalink:
- http://dlmf.nist.gov/18.9.E10
- Encodings:
- TeX, pMML, png
18.9.11
- Symbols:
-
: Chebyshev polynomial of the first kind,
: Chebyshev polynomial of the fourth kind,
: nonnegative integer and
: real variable
- Permalink:
- http://dlmf.nist.gov/18.9.E11
- Encodings:
- TeX, pMML, png
18.9.12
- Symbols:
-
: Chebyshev polynomial of the first kind,
: Chebyshev polynomial of the fourth kind,
: nonnegative integer and
: real variable
- Referenced by:
- ¶ ‣ §18.7(i), §18.9(ii)
- Permalink:
- http://dlmf.nist.gov/18.9.E12
- Encodings:
- TeX, pMML, png
¶ Laguerre
18.9.13
- Symbols:
-
: Laguerre (or generalized Laguerre) polynomial,
: nonnegative integer and
: real variable
- A&S Ref:
- 22.7.30
- Referenced by:
- §18.17(i), §18.9(ii)
- Permalink:
- http://dlmf.nist.gov/18.9.E13
- Encodings:
- TeX, pMML, png
18.9.14
- Symbols:
-
: Laguerre (or generalized Laguerre) polynomial,
: nonnegative integer and
: real variable
- A&S Ref:
- 22.7.31
- Referenced by:
- §18.9(ii)
- Permalink:
- http://dlmf.nist.gov/18.9.E14
- Encodings:
- TeX, pMML, png
§18.9(iii) Derivatives
- Notes:
- For (18.9.15) see Szegö (1975, (4.21.7)). (18.9.16) is an immediate corollary of (18.5.5) and Table 18.5.1, Row 2. For (18.9.17) and (18.9.18) see Koornwinder (2006, §4). For (18.9.19) see Szegö (1975, (4.7.14)). (18.9.20) is an immediate corollary of (18.5.5) and Table 18.5.1, Row 3. (18.9.21) and (18.9.22) are rewritings of elementary trigonometric differentiation formulas. For (18.9.23) see Szegö (1975, (5.1.14)). (18.9.24) is an immediate corollary of (18.5.5) and Table 18.5.1, Row 9. For (18.9.25) see Szegö (1975, (5.5.10)). (18.9.26) is an immediate corollary of (18.5.5) and Table 18.5.1, Row 10.
- Keywords:
- classical orthogonal polynomials, derivatives
- Permalink:
- http://dlmf.nist.gov/18.9.iii
¶ Jacobi
18.9.15
- Symbols:
-
: Jacobi polynomial,
: derivative of
with respect to
,
: nonnegative integer and
: real variable
- Referenced by:
- §18.9(iii)
- Permalink:
- http://dlmf.nist.gov/18.9.E15
- Encodings:
- TeX, pMML, png
18.9.16
- Symbols:
-
: Jacobi polynomial,
: derivative of
with respect to
,
: nonnegative integer and
: real variable
- Referenced by:
- §18.9(iii)
- Permalink:
- http://dlmf.nist.gov/18.9.E16
- Encodings:
- TeX, pMML, png
18.9.17
- Symbols:
-
: Jacobi polynomial,
: derivative of
with respect to
,
: nonnegative integer and
: real variable
- A&S Ref:
- 22.11.1
- Referenced by:
- §18.9(iii)
- Permalink:
- http://dlmf.nist.gov/18.9.E17
- Encodings:
- TeX, pMML, png
18.9.18
- Symbols:
-
: Jacobi polynomial,
: derivative of
with respect to
,
: nonnegative integer and
: real variable
- Referenced by:
- §18.9(iii)
- Permalink:
- http://dlmf.nist.gov/18.9.E18
- Encodings:
- TeX, pMML, png
¶ Ultraspherical
18.9.19
- Symbols:
-
: derivative of
with respect to
,
: ultraspherical (or Gegenbauer) polynomial,
: nonnegative integer and
: real variable
- Referenced by:
- §18.9(iii)
- Permalink:
- http://dlmf.nist.gov/18.9.E19
- Encodings:
- TeX, pMML, png
18.9.20
- Symbols:
-
: derivative of
with respect to
,
: ultraspherical (or Gegenbauer) polynomial,
: nonnegative integer and
: real variable
- Referenced by:
- §18.9(iii)
- Permalink:
- http://dlmf.nist.gov/18.9.E20
- Encodings:
- TeX, pMML, png
¶ Chebyshev
18.9.21
- Symbols:
-
: Chebyshev polynomial of the first kind,
: Chebyshev polynomial of the second kind,
: derivative of
with respect to
,
: nonnegative integer and
: real variable
- Referenced by:
- §18.9(iii)
- Permalink:
- http://dlmf.nist.gov/18.9.E21
- Encodings:
- TeX, pMML, png
18.9.22
- Symbols:
-
: Chebyshev polynomial of the first kind,
: Chebyshev polynomial of the second kind,
: derivative of
with respect to
,
: nonnegative integer and
: real variable
- Referenced by:
- §18.9(iii)
- Permalink:
- http://dlmf.nist.gov/18.9.E22
- Encodings:
- TeX, pMML, png
¶ Laguerre
18.9.23
- Symbols:
-
: derivative of
with respect to
,
: Laguerre (or generalized Laguerre) polynomial,
: nonnegative integer and
: real variable
- Referenced by:
- §18.17(i), §18.9(iii)
- Permalink:
- http://dlmf.nist.gov/18.9.E23
- Encodings:
- TeX, pMML, png
18.9.24
- Symbols:
-
: derivative of
with respect to
,
: base of exponential function,
: Laguerre (or generalized Laguerre) polynomial,
: nonnegative integer and
: real variable
- Referenced by:
- §18.9(iii)
- Permalink:
- http://dlmf.nist.gov/18.9.E24
- Encodings:
- TeX, pMML, png
¶ Hermite
18.9.25
- Symbols:
-
: Hermite polynomial,
: derivative of
with respect to
,
: nonnegative integer and
: real variable
- A&S Ref:
- 22.8.7
- Referenced by:
- §18.17(i), §18.9(iii)
- Permalink:
- http://dlmf.nist.gov/18.9.E25
- Encodings:
- TeX, pMML, png
18.9.26
- Symbols:
-
: Hermite polynomial,
: derivative of
with respect to
,
: base of exponential function,
: nonnegative integer and
: real variable
- Referenced by:
- §18.17(i), §18.9(iii)
- Permalink:
- http://dlmf.nist.gov/18.9.E26
- Encodings:
- TeX, pMML, png
18.9.27
- Symbols:
-
: Hermite polynomial,
: derivative of
with respect to
,
: nonnegative integer and
: real variable
- A&S Ref:
- 22.8.7
- Permalink:
- http://dlmf.nist.gov/18.9.E27
- Encodings:
- TeX, pMML, png
18.9.28
- Symbols:
-
: Hermite polynomial,
: derivative of
with respect to
,
: base of exponential function,
: nonnegative integer and
: real variable
- Permalink:
- http://dlmf.nist.gov/18.9.E28
- Encodings:
- TeX, pMML, png

