25 Zeta and Related Functions25.2 Definition and Expansions

§25.1 Special Notation

(For other notation see Notation for the Special Functions.)

k,m,n nonnegative integers.
p prime number.
x real variable.
a real or complex parameter.
s=\sigma+it complex variable.
z=x+iy complex variable.
\EulerConstant Euler’s constant (§5.2(ii)).
\mathop{\psi\/}\nolimits\!\left(x\right) digamma function {\mathop{\Gamma\/}\nolimits^{{\prime}}}\!\left(x\right)/\mathop{\Gamma\/}\nolimits\!\left(x\right) except in §25.16. See §5.2(i).
\mathop{B_{{n}}\/}\nolimits,\mathop{B_{{n}}\/}\nolimits\!\left(x\right) Bernoulli number and polynomial (§24.2(i)).
\mathop{\widetilde{B}_{{n}}\/}\nolimits\!\left(x\right) periodic Bernoulli function \mathop{B_{{n}}\/}\nolimits\!\left(x-\left\lfloor x\right\rfloor\right).
m\divides n m divides n.
primes on function symbols: derivatives with respect to argument.

The main function treated in this chapter is the Riemann zeta function \mathop{\zeta\/}\nolimits\!\left(s\right). This notation was introduced in Riemann (1859).

The main related functions are the Hurwitz zeta function \mathop{\zeta\/}\nolimits\!\left(s,a\right), the dilogarithm \mathop{\mathrm{Li}_{2}\/}\nolimits\!\left(z\right), the polylogarithm \mathop{\mathrm{Li}_{{s}}\/}\nolimits\!\left(z\right) (also known as Jonquière’s function \mathop{\phi\/}\nolimits\!\left(z,s\right)), Lerch’s transcendent \mathop{\Phi\/}\nolimits\!\left(z,s,a\right), and the Dirichlet \mathop{L\/}\nolimits-functions \mathop{L\/}\nolimits\!\left(s,\chi\right).