16.2 Definition and Analytic Properties16.4 Argument Unity

§16.3 Derivatives and Contiguous Functions

Contents

§16.3(i) Differentiation Formulas

§16.3(ii) Contiguous Functions

Two generalized hypergeometric functions \mathop{{{}_{{p}}F_{{q}}}\/}\nolimits\!\left(\mathbf{a};\mathbf{b};z\right) are (generalized) contiguous if they have the same pair of values of p and q, and corresponding parameters differ by integers. If p\leq q+1, then any q+2 distinct contiguous functions are linearly related. Examples are provided by the following recurrence relations:

16.3.6z\mathop{{{}_{{0}}F_{{1}}}\/}\nolimits\!\left(-;b+1;z\right)+b(b-1)\mathop{{{}_{{0}}F_{{1}}}\/}\nolimits\!\left(-;b;z\right)-b(b-1)\mathop{{{}_{{0}}F_{{1}}}\/}\nolimits\!\left(-;b-1;z\right)=0,
16.3.7\mathop{{{}_{{3}}F_{{2}}}\/}\nolimits\!\left({a_{1}+2,a_{2},a_{3}\atop b_{1},b_{2}};z\right)a_{1}(a_{1}+1)(1-z)+\mathop{{{}_{{3}}F_{{2}}}\/}\nolimits\!\left({a_{1}+1,a_{2},a_{3}\atop b_{1},b_{2}};z\right)a_{1}\left(b_{1}+b_{2}-3a_{1}-2+z(2a_{1}-a_{2}-a_{3}+1)\right)+\mathop{{{}_{{3}}F_{{2}}}\/}\nolimits\!\left({a_{1},a_{2},a_{3}\atop b_{1},b_{2}};z\right)\left((2a_{1}-b_{1})(2a_{1}-b_{2})+a_{1}-a_{1}^{2}-z(a_{1}-a_{2})(a_{1}-a_{3})\right)-\mathop{{{}_{{3}}F_{{2}}}\/}\nolimits\!\left({a_{1}-1,a_{2},a_{3}\atop b_{1},b_{2}};z\right)(a_{1}-b_{1})(a_{1}-b_{2})=0.

For further examples see §§13.3(i), 15.5(ii), and the following references: Rainville (1960, §48), Wimp (1968), and Luke (1975, §5.13).