31.1 Special Notation31.3 Basic Solutions

§31.2 Differential Equations

Contents

§31.2(i) Heun’s Equation

31.2.1\frac{{d}^{2}w}{{dz}^{2}}+\left(\frac{\gamma}{z}+\frac{\delta}{z-1}+\frac{\epsilon}{z-a}\right)\frac{dw}{dz}+\frac{\alpha\beta z-q}{z(z-1)(z-a)}w=0,\alpha+\beta+1=\gamma+\delta+\epsilon.

This equation has regular singularities at 0,1,a,\infty, with corresponding exponents \{ 0,1-\gamma\}, \{ 0,1-\delta\}, \{ 0,1-\epsilon\}, \{\alpha,\beta\}, respectively (§2.7(i)). All other homogeneous linear differential equations of the second order having four regular singularities in the extended complex plane, \Complex\cup\{\infty\}, can be transformed into (31.2.1).

The parameters play different roles: a is the singularity parameter; \alpha,\beta,\gamma,\delta,\epsilon are exponent parameters; q is the accessory parameter. The total number of free parameters is six.

§31.2(iv) Doubly-Periodic Forms

§31.2(v) Heun’s Equation Automorphisms

F-Homotopic Transformations

w(z)=z^{{1-\gamma}}w_{1}(z) satisfies (31.2.1) if w_{1} is a solution of (31.2.1) with transformed parameters q_{1}=q+(a\delta+\epsilon)(1-\gamma); \alpha _{1}=\alpha+1-\gamma, \beta _{1}=\beta+1-\gamma, \gamma _{1}=2-\gamma. Next, w(z)=(z-1)^{{1-\delta}}w_{2}(z) satisfies (31.2.1) if w_{2} is a solution of (31.2.1) with transformed parameters q_{2}=q+a\gamma(1-\delta); \alpha _{2}=\alpha+1-\delta, \beta _{2}=\beta+1-\delta, \delta _{2}=2-\delta. Lastly, w(z)=(z-a)^{{1-\epsilon}}w_{3}(z) satisfies (31.2.1) if w_{3} is a solution of (31.2.1) with transformed parameters q_{3}=q+\gamma(1-\epsilon); \alpha _{3}=\alpha+1-\epsilon, \beta _{3}=\beta+1-\epsilon, \epsilon _{3}=2-\epsilon. By composing these three steps, there result 2^{3}=8 possible transformations of the dependent variable (including the identity transformation) that preserve the form of (31.2.1).

Homographic Transformations

There are 4!=24 homographies \tilde{z}(z)=(Az+B)/(Cz+D) that take 0,1,a,\infty to some permutation of 0,1,a^{{\prime}},\infty, where a^{{\prime}} may differ from a. If \tilde{z}=\tilde{z}(z) is one of the 3!=6 homographies that map \infty to \infty, then w(z)=\tilde{w}(\tilde{z}) satisfies (31.2.1) if \tilde{w}(\tilde{z}) is a solution of (31.2.1) with z replaced by \tilde{z} and appropriately transformed parameters. For example, if \tilde{z}=z/a, then the parameters are \tilde{a}=1/a, \tilde{q}=q/a; \tilde{\delta}=\epsilon, \tilde{\epsilon}=\delta. If \tilde{z}=\tilde{z}(z) is one of the 4!-3!=18 homographies that do not map \infty to \infty, then an appropriate prefactor must be included on the right-hand side. For example, w(z)=(1-z)^{{-\alpha}}\tilde{w}(z/(z-1)), which arises from \tilde{z}=z/(z-1), satisfies (31.2.1) if \tilde{w}(\tilde{z}) is a solution of (31.2.1) with z replaced by \tilde{z} and transformed parameters \tilde{a}=a/(a-1), \tilde{q}=-(q-a\alpha\gamma)/(a-1); \tilde{\beta}=\alpha+1-\delta, \tilde{\delta}=\alpha+1-\beta.

Composite Transformations

There are 8\cdot 24=192 automorphisms of equation (31.2.1) by compositions of F-homotopic and homographic transformations. Each is a substitution of dependent and/or independent variables that preserves the form of (31.2.1). Except for the identity automorphism, each alters the parameters.