22 Jacobian Elliptic Functions22.2 Definitions

§22.1 Special Notation

(For other notation see Notation for the Special Functions.)

x,y real variables.
z complex variable.
k modulus. Except in §§22.3(iv), 22.17, and 22.19, 0\leq k\leq 1.
k^{{\prime}} complementary modulus, k^{2}+{k^{{\prime}}}^{2}=1. If k\in[0,1], then k^{{\prime}}\in[0,1].
\mathop{K\/}\nolimits, \mathop{{K^{{\prime}}}\/}\nolimits \mathop{K\/}\nolimits\!\left(k\right), \mathop{{K^{{\prime}}}\/}\nolimits\!\left(k\right)=\mathop{K\/}\nolimits\!\left(k^{{\prime}}\right) (complete elliptic integrals of the first kind (§19.2(ii))).
q nome. 0\leq q<1 except in §22.17; see also §20.1.
\tau i\mathop{{K^{{\prime}}}\/}\nolimits/\mathop{K\/}\nolimits.

All derivatives are denoted by differentials, not primes.

The functions treated in this chapter are the three principal Jacobian elliptic functions \mathop{\mathrm{sn}\/}\nolimits\left(z,k\right), \mathop{\mathrm{cn}\/}\nolimits\left(z,k\right), \mathop{\mathrm{dn}\/}\nolimits\left(z,k\right); the nine subsidiary Jacobian elliptic functions \mathop{\mathrm{cd}\/}\nolimits\left(z,k\right), \mathop{\mathrm{sd}\/}\nolimits\left(z,k\right), \mathop{\mathrm{nd}\/}\nolimits\left(z,k\right), \mathop{\mathrm{dc}\/}\nolimits\left(z,k\right), \mathop{\mathrm{nc}\/}\nolimits\left(z,k\right), \mathop{\mathrm{sc}\/}\nolimits\left(z,k\right), \mathop{\mathrm{ns}\/}\nolimits\left(z,k\right), \mathop{\mathrm{ds}\/}\nolimits\left(z,k\right), \mathop{\mathrm{cs}\/}\nolimits\left(z,k\right); the amplitude function \mathop{\mathrm{am}\/}\nolimits\left(x,k\right); Jacobi’s epsilon and zeta functions \mathop{\mathcal{E}\/}\nolimits\!\left(x,k\right) and \mathop{\mathrm{Z}\/}\nolimits\!\left(x|k\right).

The notation \mathop{\mathrm{sn}\/}\nolimits\left(z,k\right), \mathop{\mathrm{cn}\/}\nolimits\left(z,k\right), \mathop{\mathrm{dn}\/}\nolimits\left(z,k\right) is due to Gudermann (1838), following Jacobi (1827); that for the subsidiary functions is due to Glaisher (1882). Other notations for \mathop{\mathrm{sn}\/}\nolimits\left(z,k\right) are \mathrm{sn}(z\mathpunct{|}m) and \mathrm{sn}(z,m) with m=k^{2}; see Abramowitz and Stegun (1964) and Walker (1996). Similarly for the other functions.