6.1 Special Notation6.3 Graphics

§6.2 Definitions and Interrelations

Contents

§6.2(i) Exponential and Logarithmic Integrals

The principal value of the exponential integral \mathop{E_{1}\/}\nolimits\!\left(z\right) is defined by

6.2.1\mathop{E_{1}\/}\nolimits\!\left(z\right)=\int _{z}^{{\infty}}\frac{e^{{-t}}}{t}dt,z\neq 0,

where the path does not cross the negative real axis or pass through the origin. As in the case of the logarithm (§4.2(i)) there is a cut along the interval (-\infty,0] and the principal value is two-valued on (-\infty,0).

Unless indicated otherwise, it is assumed throughout the DLMF that \mathop{E_{1}\/}\nolimits\!\left(z\right) assumes its principal value. This is also true of the functions \mathop{\mathrm{Ci}\/}\nolimits(z) and \mathop{\mathrm{Chi}\/}\nolimits\!\left(z\right) defined in §6.2(ii).

6.2.2\mathop{E_{1}\/}\nolimits\!\left(z\right)=e^{{-z}}\int _{0}^{{\infty}}\frac{e^{{-t}}}{t+z}dt,|\mathop{\mathrm{ph}\/}\nolimits z|<\pi.
6.2.3\mathop{\mathrm{Ein}\/}\nolimits\!\left(z\right)=\int _{0}^{z}\frac{1-e^{{-t}}}{t}dt.

\mathop{\mathrm{Ein}\/}\nolimits\!\left(z\right) is sometimes called the complementary exponential integral. It is entire.

6.2.4\mathop{E_{1}\/}\nolimits\!\left(z\right)=\mathop{\mathrm{Ein}\/}\nolimits\!\left(z\right)-\mathop{\ln\/}\nolimits z-\EulerConstant.

The logarithmic integral is defined by

6.2.8\mathop{\mathrm{li}\/}\nolimits\!\left(x\right)=\pvint _{{0}}^{{x}}\frac{dt}{\mathop{\ln\/}\nolimits t}=\mathop{\mathrm{Ei}\/}\nolimits\!\left(\mathop{\ln\/}\nolimits x\right),x>1.

The generalized exponential integral \mathop{E_{{p}}\/}\nolimits\!\left(z\right), p\in\Complex, is treated in Chapter 8.

§6.2(ii) Sine and Cosine Integrals

6.2.9\mathop{\mathrm{Si}\/}\nolimits\!\left(z\right)=\int _{0}^{z}\frac{\mathop{\sin\/}\nolimits t}{t}dt.

\mathop{\mathrm{Si}\/}\nolimits\!\left(z\right) is an odd entire function.

6.2.10\mathop{\mathrm{si}\/}\nolimits\!\left(z\right)=-\int _{z}^{\infty}\frac{\mathop{\sin\/}\nolimits t}{t}dt=\mathop{\mathrm{Si}\/}\nolimits\!\left(z\right)-\tfrac{1}{2}\pi.
6.2.11\mathop{\mathrm{Ci}\/}\nolimits(z)=-\int _{z}^{\infty}\frac{\mathop{\cos\/}\nolimits t}{t}dt,

where the path does not cross the negative real axis or pass through the origin. This is the principal value; compare (6.2.1).

6.2.12\mathop{\mathrm{Cin}\/}\nolimits\!\left(z\right)=\int _{0}^{z}\frac{1-\mathop{\cos\/}\nolimits t}{t}dt.

\mathop{\mathrm{Cin}\/}\nolimits\!\left(z\right) is an even entire function.

6.2.13\mathop{\mathrm{Ci}\/}\nolimits\!\left(z\right)=-\mathop{\mathrm{Cin}\/}\nolimits\!\left(z\right)+\mathop{\ln\/}\nolimits z+\EulerConstant.

Values at Infinity

6.2.14
\lim _{{x\to\infty}}\mathop{\mathrm{Si}\/}\nolimits\!\left(x\right)=\tfrac{1}{2}\pi,
\lim _{{x\to\infty}}\mathop{\mathrm{Ci}\/}\nolimits\!\left(x\right)=0.

Hyperbolic Analogs of the Sine and Cosine Integrals

6.2.15\mathop{\mathrm{Shi}\/}\nolimits\!\left(z\right)=\int _{0}^{z}\frac{\mathop{\sinh\/}\nolimits t}{t}dt,
6.2.16\mathop{\mathrm{Chi}\/}\nolimits\!\left(z\right)=\EulerConstant+\mathop{\ln\/}\nolimits z+\int _{0}^{z}\frac{\mathop{\cosh\/}\nolimits t-1}{t}dt.

§6.2(iii) Auxiliary Functions