I. G. Macdonald (1998)Symmetric Functions and Orthogonal Polynomials.
University Lecture Series, Vol. 12, American Mathematical Society, Providence, RI.
I. G. Macdonald (2003)Affine Hecke Algebras and Orthogonal Polynomials.
Cambridge Tracts in Mathematics, Vol. 157, Cambridge University Press, Cambridge.
N. W. Macfadyen and P. Winternitz (1971)Crossing symmetric expansions of physical scattering amplitudes: The group and Lamé functions.
J. Mathematical Phys.12, pp. 281–293.
T. M. MacRobert (1967)Spherical Harmonics. An Elementary Treatise on Harmonic Functions with Applications.
3rd edition, International Series of Monographs in Pure and Applied Mathematics, Vol. 98, Pergamon Press, Oxford.
A software package (the successor to CAYLEY) designed to solve
computationally hard problems in algebra, number theory,
geometry, and combinatorics, and to provide a mathematically
rigorous environment for computing with algebraic,
number-theoretic, combinatoric, and geometric objects.
A. P. Magnus (1995)Painlevé-type differential equations for the recurrence coefficients of semi-classical orthogonal polynomials.
J. Comput. Appl. Math.57 (1-2), pp. 215–237.
W. Magnus, F. Oberhettinger, and R. P. Soni (1966)Formulas and Theorems for the Special Functions of Mathematical Physics.
3rd edition, Springer-Verlag, New York-Berlin.
ⓘ
Notes:
Table errata: Math. Comp. v. 23 (1969), p. 471, v. 24 (1970), pp. 240 and 505,
v. 25 (1971), no. 113, p. 201, v. 29 (1975), no. 130, p. 672, v. 30 (1976),
no. 135, pp. 677–678, v. 32 (1978), no. 141, pp. 319–320, v. 36 (1981),
no. 153, pp. 315–317, v. 41 (1983), no. 164, pp. 775–776, and v. 81 (2012),
no. 280, p. 2251
W. Magnus and S. Winkler (1966)Hill’s Equation.
Interscience Tracts in Pure and Applied Mathematics, No. 20, Interscience Publishers John Wiley & Sons, New York-London-Sydney.
ⓘ
Notes:
Reprinted by Dover Publications, Inc., New York, 1979.
S. Makinouchi (1966)Zeros of Bessel functions and accurate to twenty-nine significant digits.
Technology Reports of the Osaka University16 (685), pp. 1–44.
Yu. I. Manin (1998)Sixth Painlevé Equation, Universal Elliptic Curve, and Mirror of .
In Geometry of Differential Equations, A. Khovanskii, A. Varchenko, and V. Vassiliev (Eds.),
Amer. Math. Soc. Transl. Ser. 2, Vol. 186, pp. 131–151.
General purpose mathematical computing environment.
Includes more than 100 special functions.
Includes symbolic and arbitrary precision numerical computation.
F. Marcellán, M. Alfaro, and M. L. Rezola (1993)Orthogonal polynomials on Sobolev spaces: Old and new directions.
J. Comput. Appl. Math.48 (1-2), pp. 113–131.
O. I. Marichev (1983)Handbook of Integral Transforms of Higher Transcendental Functions: Theory and Algorithmic Tables.
Ellis Horwood Ltd./John Wiley & Sons, Inc, Chichester/New York.
ⓘ
Notes:
Edited by F. D. Gakhov,
Translated from the Russian by L. W. Longdon
O. I. Marichev (1984)On the Representation of Meijer’s -Function in the Vicinity of Singular Unity.
In Complex Analysis and Applications ’81 (Varna, 1981),
pp. 383–398.
I. Marquette and C. Quesne (2013)New ladder operators for a rational extension of the harmonic oscillator and superintegrability of some two-dimensional systems.
J. Math. Phys.54 (10), pp. Paper 102102, 12 pp..
I. Marquette and C. Quesne (2016)Connection between quantum systems involving the fourth Painlevé transcendent and -step rational extensions of the harmonic oscillator related to Hermite exceptional orthogonal polynomial.
J. Math. Phys.57 (5), pp. Paper 052101, 15 pp..
P. L. Marston (1992)Geometrical and Catastrophe Optics Methods in Scattering.
In Physical Acoustics, A. D. Pierce and R. N. Thurston (Eds.),
Vol. 21, pp. 1–234.
B. Martić (1978)Note sur certaines inégalités d’intégrales.
Akad. Nauka Umjet. Bosne Hercegov. Rad. Odjelj. Prirod. Mat.
Nauka61 (17), pp. 165–168 (French, Serbo-Croatian summary).
J. C. Mason (1993)Chebyshev polynomials of the second, third and fourth kinds in approximation, indefinite integration, and integral transforms.
In Proceedings of the Seventh Spanish Symposium on
Orthogonal Polynomials and Applications (VII SPOA)
(Granada, 1991),
Vol. 49, pp. 169–178.
T. Masuda, Y. Ohta, and K. Kajiwara (2002)A determinant formula for a class of rational solutions of Painlevé V equation.
Nagoya Math. J.168, pp. 1–25.
T. Masuda (2003)On a class of algebraic solutions to the Painlevé VI equation, its determinant formula and coalescence cascade.
Funkcial. Ekvac.46 (1), pp. 121–171.
A. Máté, P. Nevai, and W. Van Assche (1991)The supports of measures associated with orthogonal polynomials and the spectra of the related selfadjoint operators.
Rocky Mountain J. Math.21 (1), pp. 501–527.
A. M. Mathai (1993)A Handbook of Generalized Special Functions for Statistical and Physical Sciences.
Oxford Science Publications, The Clarendon Press Oxford University Press, New York.
General purpose mathematical computing environment with broad coverage of
special functions, including complex arguments and parameters.
Includes symbolic and arbitrary precision numerical computation.
General purpose mathematical computing environment.
Includes a collection of special functions.
Computations in double precision
with symbolic and extended-precision capabilities available.
D. W. Matula and P. Kornerup (1980)Foundations of Finite Precision Rational Arithmetic.
In Fundamentals of Numerical Computation (Computer-oriented
Numerical Analysis), G. Alefeld and R. D. Grigorieff (Eds.),
Comput. Suppl., Vol. 2, Vienna, pp. 85–111.
System for the manipulation of symbolic and numerical expressions.
Includes a collection of special functions.
Utilizes exact fractions, arbitrary precision integers, and arbitrary
precision floating point numbers.
B. M. McCoy (1992)Spin Systems, Statistical Mechanics and Painlevé Functions.
In Painlevé Transcendents: Their Asymptotics and Physical Applications, D. Levi and P. Winternitz (Eds.),
NATO Adv. Sci. Inst. Ser. B Phys., Vol. 278, pp. 377–391.
ⓘ
Notes:
Proc. NATO Adv. Res. Workshop, Sainte-Adèle, Canada, 1990
F. A. McDonald and J. Nuttall (1969)Complex-energy method for elastic -H scattering above the ionization threshold.
Phys. Rev. Lett.23 (7), pp. 361–363.
H. R. McFarland and D. St. P. Richards (2001)Exact misclassification probabilities for plug-in normal quadratic discriminant functions. I. The equal-means case.
J. Multivariate Anal.77 (1), pp. 21–53.
H. R. McFarland and D. St. P. Richards (2002)Exact misclassification probabilities for plug-in normal quadratic discriminant functions. II. The heterogeneous case.
J. Multivariate Anal.82 (2), pp. 299–330.
R. Mehrem, J. T. Londergan, and M. H. Macfarlane (1991)Analytic expressions for integrals of products of spherical Bessel functions.
J. Phys. A24 (7), pp. 1435–1453.
C. S. Meijer (1932)Über die asymptotische Entwicklung von , für große Werte von und . I, II.
Proc. Akad. Wet. Amsterdam35, pp. 1170–1180, 1291–1303 (German).
C. S. Meijer (1946)On the -function. VII, VIII.
Nederl. Akad. Wetensch., Proc.49, pp. 1063–1072, 1165–1175 = Indagationes Math. 8, 661–670, 713–723 (1946).
G. Meinardus (1967)Approximation of Functions: Theory and Numerical Methods.
Springer Tracts in Natural Philosophy, Vol. 13, Springer-Verlag, New York.
ⓘ
Notes:
Expanded translation from the German edition. Translated by Larry L. Schumaker
P. N. Meisinger, T. R. Miller, and M. C. Ogilvie (2002)Phenomenological equations of state for the quark-gluon plasma.
Phys. Rev. D65 (3), pp. (034009–1)–(034009–10).
J. Meixner, F. W. Schäfke, and G. Wolf (1980)Mathieu Functions and Spheroidal Functions and Their Mathematical Foundations: Further Studies.
Lecture Notes in Mathematics, Vol. 837, Springer-Verlag, Berlin-New York.
J. Meixner and F. W. Schäfke (1954)Mathieusche Funktionen und Sphäroidfunktionen mit Anwendungen auf physikalische und technische Probleme.
Die Grundlehren der mathematischen Wissenschaften in
Einzeldarstellungen mit besonderer Berücksichtigung der
Anwendungsgebiete, Band LXXI, Springer-Verlag, Berlin (German).
R. Metzler, J. Klafter, and J. Jortner (1999)Hierarchies and logarithmic oscillations in the temporal relaxation patterns of proteins and other complex systems.
Proc. Nat. Acad. Sci. U .S. A.96 (20), pp. 11085–11089.
A. Michaeli (1996)Asymptotic analysis of edge-excited currents on a convex face of a perfectly conducting wedge under overlapping penumbra region conditions.
IEEE Trans. Antennas and Propagation44 (1), pp. 97–101.
N. Michel and M. V. Stoitsov (2008)Fast computation of the Gauss hypergeometric function with all its parameters complex with application to the Pöschl-Teller-Ginocchio potential wave functions.
Comput. Phys. Comm.178 (7), pp. 535–551.
C. Micu and E. Papp (2005)Applying -Laguerre polynomials to the derivation of -deformed energies of oscillator and Coulomb systems.
Romanian Reports in Physics57 (1), pp. 25–34.
G. F. Miller (1966)On the convergence of the Chebyshev series for functions possessing a singularity in the range of representation.
SIAM J. Numer. Anal.3 (3), pp. 390–409.
J. C. P. Miller (1946)The Airy Integral, Giving Tables of Solutions of the Differential Equation .
British Association for the Advancement of Science,
Mathematical Tables Part-Vol. B, Cambridge University Press, Cambridge.
J. C. P. Miller (1950)On the choice of standard solutions for a homogeneous linear differential equation of the second order.
Quart. J. Mech. Appl. Math.3 (2), pp. 225–235.
K. S. Miller and B. Ross (1993)An Introduction to the Fractional Calculus and Fractional Differential Equations.
A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York.
A. E. Milne, P. A. Clarkson, and A. P. Bassom (1997)Bäcklund transformations and solution hierarchies for the third Painlevé equation.
Stud. Appl. Math.98 (2), pp. 139–194.
S. C. Milne (2002)Infinite families of exact sums of squares formulas, Jacobi elliptic functions, continued fractions, and Schur functions.
Ramanujan J.6 (1), pp. 7–149.
S. C. Milne (1996)New infinite families of exact sums of squares formulas, Jacobi elliptic functions, and Ramanujan’s tau function.
Proc. Nat. Acad. Sci. U.S.A.93 (26), pp. 15004–15008.
L. M. Milne-Thomson (1933)The Calculus of Finite Differences.
Macmillan and Co. Ltd., London.
ⓘ
Notes:
Reprinted in 1951 by Macmillan, and in 1981 by Chelsea Publishing Co., New York, and American Mathematical Society, AMS Chelsea Book Series, Providence, RI.
S. Moch, P. Uwer, and S. Weinzierl (2002)Nested sums, expansion of transcendental functions, and multiscale multiloop integrals.
J. Math. Phys.43 (6), pp. 3363–3386.
V. P. Modenov and A. V. Filonov (1986)Calculation of zeros of cylindrical functions and their derivatives.
Vestnik Moskov. Univ. Ser. XV Vychisl. Mat. Kibernet. (2), pp. 63–64, 71 (Russian).
E. W. Montroll (1964)Lattice Statistics.
In Applied Combinatorial Mathematics, E. F. Beckenbach (Ed.),
University of California Engineering and Physical Sciences
Extension Series, pp. 96–143.
ⓘ
Notes:
Reprinted by Robert E. Krieger Publishing Co. in 1981.
P. Moon and D. E. Spencer (1971)Field Theory Handbook. Including Coordinate Systems, Differential Equations and Their Solutions.
2nd edition, Springer-Verlag, Berlin.
R. E. Moore (1979)Methods and Applications of Interval Analysis.
SIAM Studies in Applied Mathematics, Vol. 2, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
G. W. Morgenthaler and H. Reismann (1963)Zeros of first derivatives of Bessel functions of the first kind, , , .
J. Res. Nat. Bur. Standards Sect. B67B (3), pp. 181–183.
MPFR is a C library for multiple-precision floating-point computations
with correct rounding. The main goal of MPFR is to provide a library
for multiple-precision floating-point computation which is both
efficient and has well-defined semantics. MPFR includes most of the
elementary functions. It also implements the gamma function, and more
special functions are planned in the future.
Mpmath is a pure-Python library for multiprecision floating-point arithmetic.
It provides an extensive set of transcendental functions, unlimited exponent sizes, complex numbers,
interval arithmetic, numerical integration and differentiation, root-finding, linear algebra,
and much more.
H. P. Mulholland and S. Goldstein (1929)The characteristic numbers of the Mathieu equation with purely imaginary parameter.
Phil. Mag. Series 78 (53), pp. 834–840.
H. J. W. Müller (1963)Asymptotic expansions of prolate spheroidal wave functions and their characteristic numbers.
J. Reine Angew. Math.212, pp. 26–48.
B. T. M. Murphy and A. D. Wood (1997)Hyperasymptotic solutions of second-order ordinary differential equations with a singularity of arbitrary integer rank.
Methods Appl. Anal.4 (3), pp. 250–260.
L. Mutafchiev and E. Kamenov (2006)Asymptotic formula for the number of plane partitions of positive integers.
C. R. Acad. Bulgare Sci.59 (4), pp. 361–366.