10.32.1 | |||
ⓘ
|
10.32.2 | |||
. | |||
ⓘ
|
10.32.3 | |||
ⓘ
|
10.32.4 | |||
. | |||
ⓘ
|
10.32.5 | |||
ⓘ
|
10.32.6 | |||
. | |||
ⓘ
|
10.32.7 | |||
, . | |||
ⓘ
|
10.32.8 | |||
, . | |||
ⓘ
|
10.32.9 | |||
. | |||
ⓘ
|
10.32.10 | |||
. | |||
ⓘ
|
10.32.11 | |||
, , . | |||
ⓘ
|
10.32.12 | |||
. | |||
ⓘ
|
10.32.13 | |||
. | |||
ⓘ
|
10.32.14 | |||
. | |||
ⓘ
|
In (10.32.14) the integration contour separates the poles of from the poles of .
10.32.15 | |||
. | |||
ⓘ
|
10.32.16 | |||
, , . | |||
ⓘ
|
10.32.17 | |||
. | |||
ⓘ
|
10.32.18 | |||
, , . | |||
ⓘ
|
10.32.19 | |||
. | |||
ⓘ
|
For similar integrals for and see Paris and Kaminski (2001, p. 116).
For collections of integral representations of modified Bessel functions, or products of modified Bessel functions, see Erdélyi et al. (1953b, §§7.3, 7.12, and 7.14.2), Erdélyi et al. (1954a, pp. 48–60, 105–115, 276–285, and 357–359), Gröbner and Hofreiter (1950, pp. 193–194), Magnus et al. (1966, §3.7), Marichev (1983, pp. 191–216), and Watson (1944, Chapters 6, 12, and 13).