In this subsection and denote cylinder functions(§10.2(ii)) of orders and , respectively, not necessarily distinct.
10.22.1 | ||||
ⓘ
|
10.22.2 | |||
. | |||
ⓘ
|
For the Struve function see §11.2(i).
10.22.3 | ||||
, | ||||
. | ||||
ⓘ
|
10.22.4 | |||
, | |||
ⓘ
|
10.22.5 | ||||
ⓘ
| ||||
10.22.6 | ||||
, | ||||
ⓘ
|
10.22.7 | ||||
, | ||||
. | ||||
ⓘ
|
Throughout this subsection .
10.22.8 | |||
. | |||
ⓘ
|
10.22.9 | |||
. | |||
ⓘ
|
10.22.10 | |||
. | |||
ⓘ
|
10.22.11 | ||||
ⓘ
| ||||
10.22.12 | ||||
ⓘ
|
10.22.17 | |||
, | |||
ⓘ
|
10.22.18 | |||
. | |||
ⓘ
|
10.22.19 | |||
, , | |||
ⓘ
|
10.22.20 | ||||
, | ||||
ⓘ
| ||||
10.22.21 | ||||
. | ||||
ⓘ
|
10.22.22 | |||
. | |||
ⓘ
|
For see §10.25(ii).
10.22.26 | |||
. | |||
ⓘ
|
10.22.27 | ||||
, | ||||
ⓘ
| ||||
10.22.28 | ||||
, | ||||
ⓘ
| ||||
10.22.29 | ||||
ⓘ
|
10.22.30 | |||
. | |||
ⓘ
|
10.22.31 | |||
. | |||
ⓘ
|
10.22.32 | ||||
. | ||||
ⓘ
| ||||
10.22.33 | ||||
. | ||||
ⓘ
|
10.22.34 | |||
. | |||
ⓘ
|
10.22.35 | |||
. | |||
ⓘ
|
10.22.36 | |||
. | |||
ⓘ
|
When the left-hand side of (10.22.36) is the th repeated integral of (§§1.4(v) and 1.15(vi)).
If , then
10.22.37 | |||
ⓘ
|
where and are zeros of (§10.21(i)), and is Kronecker’s symbol.
Also, if are real constants with and , then
10.22.38 | |||
ⓘ
|
where and are positive zeros of . (Compare (10.22.55)).
When
10.22.39 | |||
ⓘ
|
10.22.40 | |||
ⓘ
|
where is Euler’s constant (§5.2(ii)). Compare (10.22.11) and (10.22.12).
10.22.41 | ||||
, | ||||
ⓘ
| ||||
10.22.42 | ||||
. | ||||
ⓘ
|
10.22.43 | ||||
, , | ||||
ⓘ
| ||||
10.22.44 | ||||
, . | ||||
ⓘ
|
10.22.45 | |||
. | |||
ⓘ
|
10.22.46 | |||
, , . | |||
ⓘ
|
10.22.47 | |||
. | |||
ⓘ
|
For see §10.25(ii).
10.22.48 | |||
. | |||
ⓘ
|
10.22.49 | |||
, | |||
ⓘ
|
10.22.50 | |||
. | |||
ⓘ
|
For the hypergeometric function see §15.2(i).
10.22.51 | ||||
, , | ||||
ⓘ
| ||||
10.22.52 | ||||
, | ||||
ⓘ
|
10.22.53 | |||
, . | |||
ⓘ
|
For and see §10.25(ii).
10.22.54 | |||
, . | |||
ⓘ
|
For the confluent hypergeometric function see §13.2(i).
10.22.55 | |||
. | |||
ⓘ
|
10.22.56 | |||
, . | |||
ⓘ
|
If , then interchange and , and also and . If , then
10.22.57 | ||||
. | ||||
ⓘ
| ||||
10.22.58 | ||||
, . | ||||
ⓘ
|
When
10.22.59 | |||
ⓘ
|
10.22.60 | |||
ⓘ
|
When ,
10.22.61 | |||
ⓘ
|
When ,
10.22.62 | |||
ⓘ
|
When ,
10.22.63 | |||
ⓘ
|
When and ,
10.22.64 | |||
ⓘ
|
10.22.65 | |||
ⓘ
|
In (10.22.66)–(10.22.70) are positive constants.
For the associated Legendre function see §14.3(ii) with . For and see §10.25(ii).
10.22.69 | ||||
. | ||||
ⓘ
| ||||
10.22.70 | ||||
, . | ||||
ⓘ
|
Equation (10.22.70) also remains valid if the order of the functions on both sides is replaced by , , and the constraint is replaced by .
See also §1.17(ii) for an integral representation of the Dirac delta in terms of a product of Bessel functions.
In (10.22.71) and (10.22.72) are positive constants.
For the Ferrers function and the associated Legendre function , see §§14.3(i) and 14.3(ii), respectively.
In (10.22.74) and (10.22.75), are positive constants and
10.22.73 | ||||
ⓘ
|
(Thus if are the sides of a triangle, then is the area of the triangle.)
If , then
10.22.74 | ||||
ⓘ
| ||||
If , then | ||||
10.22.75 | ||||
ⓘ
|
The Hankel transform (or Bessel transform) of a function is defined as
10.22.76 | |||
ⓘ
|
Hankel’s inversion theorem is given by
10.22.77 | |||
ⓘ
|
Sufficient conditions for the validity of (10.22.77) are that when , or that and when ; see Titchmarsh (1986a, Theorem 135, Chapter 8) and Akhiezer (1988, p. 62).
For asymptotic expansions of Hankel transforms see Wong (1976, 1977), Frenzen and Wong (1985a) and Galapon and Martinez (2014).
For collections of Hankel transforms see Erdélyi et al. (1954b, Chapter 8) and Oberhettinger (1972).
The following two formulas are generalizations of the Hankel transform. These are examples of the self-adjoint extensions and the Weyl alternatives of §1.18(ix).
10.22.78 | |||
. | |||
ⓘ
|
This is the Weber transform. A sufficient condition for the validity is .
10.22.79 | |||
. | |||
ⓘ
|
Sufficient conditions for the validity of (10.22.79) are that when , or that and when ; see Titchmarsh (1962a, pp. 88–90).
For collections of integrals of the functions , , , and , including integrals with respect to the order, see Andrews et al. (1999, pp. 216–225), Apelblat (1983, §12), Erdélyi et al. (1953b, §§7.7.1–7.7.7 and 7.14–7.14.2), Erdélyi et al. (1954a, b), Gradshteyn and Ryzhik (2015, §§5.5 and 6.5–6.7), Gröbner and Hofreiter (1950, pp. 196–204), Luke (1962), Magnus et al. (1966, §3.8), Marichev (1983, pp. 191–216), Oberhettinger (1974, §§1.10 and 2.7), Oberhettinger (1990, §§1.13–1.16 and 2.13–2.16), Oberhettinger and Badii (1973, §§1.14 and 2.12), Okui (1974, 1975), Prudnikov et al. (1986b, §§1.8–1.10, 2.12–2.14, 3.2.4–3.2.7, 3.3.2, and 3.4.1), Prudnikov et al. (1992a, §§3.12–3.14), Prudnikov et al. (1992b, §§3.12–3.14), Watson (1944, Chapters 5, 12, 13, and 14), and Wheelon (1968).