About the Project
18 Orthogonal PolynomialsClassical Orthogonal Polynomials

§18.17 Integrals

Contents
  1. §18.17(i) Indefinite Integrals
  2. §18.17(ii) Integral Representations for Products
  3. §18.17(iii) Nicholson-Type Integrals
  4. §18.17(iv) Fractional Integrals
  5. §18.17(v) Fourier Transforms
  6. §18.17(vi) Laplace Transforms
  7. §18.17(vii) Mellin Transforms
  8. §18.17(viii) Other Integrals
  9. §18.17(ix) Compendia

§18.17(i) Indefinite Integrals

Jacobi

18.17.1 2n0x(1y)α(1+y)βPn(α,β)(y)dy=Pn1(α+1,β+1)(0)(1x)α+1(1+x)β+1Pn1(α+1,β+1)(x).

Laguerre

18.17.2 0xLm(y)Ln(xy)dy=0xLm+n(y)dy=Lm+n(x)Lm+n+1(x).

Hermite

18.17.3 0xHn(y)dy=12(n+1)(Hn+1(x)Hn+1(0)),
18.17.4 0xey2Hn(y)dy=Hn1(0)ex2Hn1(x).

Just as the indefinite integrals (18.17.1), (18.17.3) and (18.17.4), many similar formulas can be obtained by applying (1.4.26) to the differentiation formulas (18.9.15), (18.9.16) and (18.9.19)–(18.9.28).

§18.17(ii) Integral Representations for Products

Ultraspherical

18.17.5 Cn(λ)(cosθ1)Cn(λ)(1)Cn(λ)(cosθ2)Cn(λ)(1)=Γ(λ+12)π12Γ(λ)0πCn(λ)(cosθ1cosθ2+sinθ1sinθ2cosϕ)Cn(λ)(1)(sinϕ)2λ1dϕ,
λ>0.

Legendre

18.17.6 Pn(cosθ1)Pn(cosθ2)=1π0πPn(cosθ1cosθ2+sinθ1sinθ2cosϕ)dϕ.

For formulas for Jacobi and Laguerre polynomials analogous to (18.17.5) and (18.17.6), see Koornwinder (1974, 1977). For addition formulas corresponding to (18.17.5) and (18.17.6) see (18.18.8) and (18.18.9), respectively.

§18.17(iii) Nicholson-Type Integrals

Legendre

18.17.7 (Pn(x))2+4π2(𝖰n(x))2=4π21Qn(x2+(1x2)t)(t21)12dt,
1<x<1.

For the Ferrers function 𝖰n(x) and Legendre function Qn(x) see §§14.3(i) and 14.3(ii), with μ=0 and ν=n.

Hermite

18.17.8 (Hn(x))2+2n(n!)2ex2(V(n12,212x))2=2n+32n!ex2π0e(2n+1)t+x2tanht(sinh2t)12dt.

For the parabolic cylinder function V(a,z) see §12.2. For similar formulas for ultraspherical polynomials see Durand (1975), and for Jacobi and Laguerre polynomials see Durand (1978).

§18.17(iv) Fractional Integrals

Jacobi

18.17.9 (1x)α+μPn(α+μ,βμ)(x)Γ(α+μ+n+1)=x1(1y)αPn(α,β)(y)Γ(α+n+1)(yx)μ1Γ(μ)dy,
μ>0, 1<x<1,
18.17.10 xβ+μ(x+1)nΓ(β+μ+n+1)Pn(α,β+μ)(x1x+1) =0xyβ(y+1)nΓ(β+n+1)Pn(α,β)(y1y+1)(xy)μ1Γ(μ)dy,
μ>0, x>0,
18.17.11 Γ(n+α+βμ+1)xn+α+βμ+1Pn(α,βμ)(12x1) =xΓ(n+α+β+1)yn+α+β+1Pn(α,β)(12y1)(yx)μ1Γ(μ)dy,
α+β+1>μ>0, x>1,

and three formulas similar to (18.17.9)–(18.17.11) by symmetry; compare the second row in Table 18.6.1. Formula (18.17.9), after substitution of (18.5.7), is a special case of (15.6.8). Formulas (18.17.9), (18.17.10) and (18.17.11) are fractional generalizations of n-th derivative formulas which are, after substitution of (18.5.7), special cases of (15.5.4), (15.5.5) and (15.5.3), respectively.

Ultraspherical

18.17.12 Γ(λμ)Cn(λμ)(x12)xλμ+12n =xΓ(λ)Cn(λ)(y12)yλ+12n(yx)μ1Γ(μ)dy,
λ>μ>0, x>0,
18.17.13 x12n(x1)λ+μ12Γ(λ+μ+12)Cn(λ+μ)(x12)Cn(λ+μ)(1) =1xy12n(y1)λ12Γ(λ+12)Cn(λ)(y12)Cn(λ)(1)(xy)μ1Γ(μ)dy,
μ>0, x>1.

Formulas (18.17.12) and (18.17.13) are fractional generalizations of the differentiation formulas given in (Erdélyi et al., 1953b, §10.9(15)).

Laguerre

18.17.14 xα+μLn(α+μ)(x)Γ(α+μ+n+1) =0xyαLn(α)(y)Γ(α+n+1)(xy)μ1Γ(μ)dy,
μ>0, x>0.
18.17.15 exLn(α)(x) =xeyLn(α+μ)(y)(yx)μ1Γ(μ)dy,
μ>0.

Formulas (18.17.14) and (18.17.15) are fractional generalizations of n-th derivative formulas which are, after substitution of (13.6.19), special cases of (13.3.18) and (13.3.20), respectively.

§18.17(v) Fourier Transforms

Throughout this subsection we assume y>0; often however, this restriction can be eased by analytic continuation. In particular, in case of exponential Fourier transforms, we may assume y.

Jacobi

18.17.16 11(1x)α(1+x)βPn(α,β)(x)eixydx=(iy)neiyn!2n+α+β+1B(n+α+1,n+β+1)F11(n+α+1;2n+α+β+2;2iy).

For the beta function B(a,b) see §5.12, and for the confluent hypergeometric function F11 see (16.2.1) and Chapter 13.

Ultraspherical

18.17.16_5 11(1x2)λ12Cn(λ)(x)eixydx=2πinΓ(n+2λ)Jn+λ(y)n!Γ(λ)(2y)λ,
18.17.17 01(1x2)λ12C2n(λ)(x)cos(xy)dx=(1)nπΓ(2n+2λ)Jλ+2n(y)(2n)!Γ(λ)(2y)λ,
18.17.18 01(1x2)λ12C2n+1(λ)(x)sin(xy)dx=(1)nπΓ(2n+2λ+1)J2n+λ+1(y)(2n+1)!Γ(λ)(2y)λ.

For the Bessel function Jν see §10.2(ii).

Legendre

18.17.19 11Pn(x)eixydx=in2πyJn+12(y),
18.17.20 01Pn(12x2)cos(xy)dx=(1)n12πJn+12(12y)Jn12(12y),
18.17.21 01Pn(12x2)sin(xy)dx=12π(Jn+12(12y))2.

Hermite

18.17.21_1 12πce12x2/cHn(x)eixydx=(i2c1)ne12cy2Hn(cy2c1),
(c)>0, c12,
18.17.21_2 1πex2Hn(x)eixydx=ine14y2yn,

In (18.17.21_1) the branch choice of 2c1 for 0<c<12 is unimportant because on the right-hand side only even powers of 2c1 occur after expansion of the Hermite polynomial by (18.5.13). Formulas (18.17.21_2) and (18.17.21_3) are respectively the limit case c12 and the special case c=1 of (18.17.21_1).

18.17.22 12πe14x2𝐻𝑒n(x)e12ixydx=ine14y2𝐻𝑒n(y),
18.17.23 0e12x2𝐻𝑒2n(x)cos(xy)dx=(1)n12πy2ne12y2,
18.17.24 0ex2𝐻𝑒2n(2x)cos(xy)dx=(1)n12πe14y2𝐻𝑒2n(y).
18.17.25 0e12x2𝐻𝑒n(x)𝐻𝑒n+2m(x)cos(xy)dx=(1)m12πn!y2me12y2Ln(2m)(y2),
18.17.26 0e12x2𝐻𝑒n(x)𝐻𝑒n+2m+1(x)sin(xy)dx=(1)m12πn!y2m+1e12y2Ln(2m+1)(y2).
18.17.27 0e12x2𝐻𝑒2n+1(x)sin(xy)dx=(1)n12πy2n+1e12y2,
18.17.28 0ex2𝐻𝑒2n+1(2x)sin(xy)dx=(1)n12πe14y2𝐻𝑒2n+1(y).

Laguerre

18.17.28_5 0exxαLn(α)(x)eixydx=Γ(α+n+1)(iy)nn!(1iy)α+n+1,
18.17.29 0x2me12x2Ln(2m)(x2)cos(xy)dx=(1)m12π1n!e12y2𝐻𝑒n(y)𝐻𝑒n+2m(y),
18.17.30 0x2ne12x2Ln(n12)(12x2)cos(xy)dx=12πy2ne12y2Ln(n12)(12y2),
18.17.31 0eaxxν2nL2n1(ν2n)(ax)cos(xy)dx=i(1)nΓ(ν)2(2n1)!y2n1((a+iy)ν(aiy)ν),
ν>2n1, a>0,
18.17.32 0eaxxν12nL2n(ν12n)(ax)cos(xy)dx=(1)nΓ(ν)2(2n)!y2n((a+iy)ν+(aiy)ν),
ν>2n, a>0.

§18.17(vi) Laplace Transforms

Many of the Fourier transforms given in §18.17(v) have analytic continuations to Laplace transforms. Some of the resulting formulas are given below.

Jacobi

18.17.33 11e(x+1)zPn(α,β)(x)(1x)α(1+x)βdx=(1)n2α+β+n+1Γ(α+n+1)Γ(β+n+1)Γ(α+β+2n+2)n!znF11(β+n+1α+β+2n+2;2z),
z.

For the confluent hypergeometric function F11 see (16.2.1) and Chapter 13.

Laguerre

18.17.34 0exzLn(α)(x)exxαdx=Γ(α+n+1)znn!(z+1)α+n+1,
z>1.
18.17.34_5 0exzLm(α)(x)Ln(α)(x)exxαdx=Γ(α+m+1)Γ(α+n+1)Γ(α+1)m!n!zm+n(z+1)α+m+n+1F12(m,nα+1;z2),
z>1.

Hermite

§18.17(vii) Mellin Transforms

Jacobi

18.17.36 11(1x)z1(1+x)βPn(α,β)(x)dx=2β+zΓ(z)Γ(1+β+n)(1+αz)nn!Γ(1+β+z+n),
z>0.

Ultraspherical

18.17.37 01(1x2)λ12Cn(λ)(x)xz1dx=π 212λzΓ(n+2λ)Γ(z)n!Γ(λ)Γ(12+12n+λ+12z)Γ(12+12z12n),
z>0.

Legendre

18.17.38 01P2n(x)xz1dx=(1)n(1212z)n2(12z)n+1,
z>0,
18.17.39 01P2n+1(x)xz1dx=(1)n(112z)n2(12+12z)n+1,
z>1.

Laguerre

18.17.40 0eaxLn(α)(bx)xz1dx=Γ(z+n)n!(ab)nanzF12(n,1+αz1nz;aab),
a>0, z>0.

This generalizes (18.17.34). For the hypergeometric function F12 see §§15.1 and 15.2(i).

Hermite

18.17.41 0eax𝐻𝑒n(x)xz1dx=Γ(z+n)an2F22(12n,12n+1212z12n,12z12n+12;12a2),
a>0. Also, z>0, n even; z>1, n odd.

For the generalized hypergeometric function F22 see (16.2.1).

§18.17(viii) Other Integrals

Ultraspherical

18.17.41_5 11C(λ)(x)Cm(λ)(x)Cn(λ)(x)(1x2)λ12dx=(λ)12+12m12n(λ)12m+12n12(λ)12n+1212m(2λ)12+12m+12nΓ(λ+12)π(12+12m12n)!(12m+12n12)!(12n+1212m)!Γ(λ+12+12m+12n+1),

provided that +m+n is even and the sum of any two of ,m,n is not less than the third; otherwise the integral is zero.

Chebyshev

Legendre

18.17.44 11Pn(x)Pn(t)|xt|dt=2(1+12++1n)Pn(x),
1x1.

The case x=1 is a limit case of an integral for Jacobi polynomials; see Askey and Razban (1972).

18.17.45 (n+12)(1+x)121x(xt)12Pn(t)dt=Tn(x)+Tn+1(x)=(1+x)Vn(x),
18.17.46 (n+12)(1x)12x1(tx)12Pn(t)dt=Tn(x)Tn+1(x)=(1x)Wn(x).

Laguerre

18.17.47 0xtαLm(α)(t)Lm(α)(0)(xt)βLn(β)(xt)Ln(β)(0)dt=Γ(α+1)Γ(β+1)Γ(α+β+2)xα+β+1Lm+n(α+β+1)(x)Lm+n(α+β+1)(0).

Hermite

18.17.48 Hm(y)ey2Hn(xy)e(xy)2dy=π12212(m+n+1)Hm+n(212x)e12x2.
18.17.49 H(x)Hm(x)Hn(x)ex2dx=212(+m+n)!m!n!π(12+12m12n)!(12m+12n12)!(12n+1212m)!,

provided that +m+n is even and the sum of any two of ,m,n is not less than the third; otherwise the integral is zero.

Formulas (18.17.45) and (18.17.49) are integrated forms of the linearization formulas (18.18.22) and (18.18.23), respectively.

§18.17(ix) Compendia

For further integrals, see Apelblat (1983, pp. 189–204), Erdélyi et al. (1954a, pp. 38–39, 94–95, 170–176, 259–261, 324), Erdélyi et al. (1954b, pp. 42–44, 271–294), Gradshteyn and Ryzhik (2015, §§7.3–7.4), Gröbner and Hofreiter (1950, pp. 23–30), Marichev (1983, pp. 216–247), Oberhettinger (1972, pp. 64–67), Oberhettinger (1974, pp. 83–92), Oberhettinger (1990, pp. 44–47 and 152–154), Oberhettinger and Badii (1973, pp. 103–112), Prudnikov et al. (1986b, pp. 420–617), Prudnikov et al. (1992a, pp. 419–476), and Prudnikov et al. (1992b, pp. 280–308).