DLMF
Index
Notations
Search
Help?
Citing
Customize
Annotate
UnAnnotate
About the Project
12
Parabolic Cylinder Functions
Properties
12.7
Relations to Other Functions
12.9
Asymptotic Expansions for Large Variable
§12.8
Recurrence Relations and Derivatives
ⓘ
Permalink:
http://dlmf.nist.gov/12.8
See also:
Annotations for
Ch.12
Contents
§12.8(i)
Recurrence Relations
§12.8(ii)
Derivatives
§12.8(i)
Recurrence Relations
ⓘ
Keywords:
parabolic cylinder functions
,
recurrence relations
Notes:
See
Miller (
1955
, pp. 65)
.
Permalink:
http://dlmf.nist.gov/12.8.i
See also:
Annotations for
§12.8
and
Ch.12
12.8.1
z
U
(
a
,
z
)
−
U
(
a
−
1
,
z
)
+
(
a
+
1
2
)
U
(
a
+
1
,
z
)
=
0
,
ⓘ
Symbols:
U
(
a
,
z
)
: parabolic cylinder function
,
z
: complex variable
and
a
: real or complex parameter
A&S Ref:
19.6.4
Referenced by:
§12.8(i)
Permalink:
http://dlmf.nist.gov/12.8.E1
Encodings:
TeX
,
pMML
,
png
See also:
Annotations for
§12.8(i)
,
§12.8
and
Ch.12
12.8.2
U
′
(
a
,
z
)
+
1
2
z
U
(
a
,
z
)
+
(
a
+
1
2
)
U
(
a
+
1
,
z
)
=
0
,
ⓘ
Symbols:
U
(
a
,
z
)
: parabolic cylinder function
,
z
: complex variable
and
a
: real or complex parameter
A&S Ref:
19.6.1
Permalink:
http://dlmf.nist.gov/12.8.E2
Encodings:
TeX
,
pMML
,
png
See also:
Annotations for
§12.8(i)
,
§12.8
and
Ch.12
12.8.3
U
′
(
a
,
z
)
−
1
2
z
U
(
a
,
z
)
+
U
(
a
−
1
,
z
)
=
0
,
ⓘ
Symbols:
U
(
a
,
z
)
: parabolic cylinder function
,
z
: complex variable
and
a
: real or complex parameter
A&S Ref:
19.6.2
Permalink:
http://dlmf.nist.gov/12.8.E3
Encodings:
TeX
,
pMML
,
png
See also:
Annotations for
§12.8(i)
,
§12.8
and
Ch.12
12.8.4
2
U
′
(
a
,
z
)
+
U
(
a
−
1
,
z
)
+
(
a
+
1
2
)
U
(
a
+
1
,
z
)
=
0
.
ⓘ
Symbols:
U
(
a
,
z
)
: parabolic cylinder function
,
z
: complex variable
and
a
: real or complex parameter
A&S Ref:
19.6.3
Referenced by:
§12.8(i)
Permalink:
http://dlmf.nist.gov/12.8.E4
Encodings:
TeX
,
pMML
,
png
See also:
Annotations for
§12.8(i)
,
§12.8
and
Ch.12
(
12.8.1
)–(
12.8.4
) are also satisfied by
U
¯
(
a
,
z
)
.
12.8.5
z
V
(
a
,
z
)
−
V
(
a
+
1
,
z
)
+
(
a
−
1
2
)
V
(
a
−
1
,
z
)
=
0
,
ⓘ
Symbols:
V
(
a
,
z
)
: parabolic cylinder function
,
z
: complex variable
and
a
: real or complex parameter
A&S Ref:
19.6.8
Permalink:
http://dlmf.nist.gov/12.8.E5
Encodings:
TeX
,
pMML
,
png
See also:
Annotations for
§12.8(i)
,
§12.8
and
Ch.12
12.8.6
V
′
(
a
,
z
)
−
1
2
z
V
(
a
,
z
)
−
(
a
−
1
2
)
V
(
a
−
1
,
z
)
=
0
,
ⓘ
Symbols:
V
(
a
,
z
)
: parabolic cylinder function
,
z
: complex variable
and
a
: real or complex parameter
A&S Ref:
19.6.5
Permalink:
http://dlmf.nist.gov/12.8.E6
Encodings:
TeX
,
pMML
,
png
See also:
Annotations for
§12.8(i)
,
§12.8
and
Ch.12
12.8.7
V
′
(
a
,
z
)
+
1
2
z
V
(
a
,
z
)
−
V
(
a
+
1
,
z
)
=
0
,
ⓘ
Symbols:
V
(
a
,
z
)
: parabolic cylinder function
,
z
: complex variable
and
a
: real or complex parameter
A&S Ref:
19.6.6
Permalink:
http://dlmf.nist.gov/12.8.E7
Encodings:
TeX
,
pMML
,
png
See also:
Annotations for
§12.8(i)
,
§12.8
and
Ch.12
12.8.8
2
V
′
(
a
,
z
)
−
V
(
a
+
1
,
z
)
−
(
a
−
1
2
)
V
(
a
−
1
,
z
)
=
0
.
ⓘ
Symbols:
V
(
a
,
z
)
: parabolic cylinder function
,
z
: complex variable
and
a
: real or complex parameter
A&S Ref:
19.6.7
Permalink:
http://dlmf.nist.gov/12.8.E8
Encodings:
TeX
,
pMML
,
png
See also:
Annotations for
§12.8(i)
,
§12.8
and
Ch.12
§12.8(ii)
Derivatives
ⓘ
Keywords:
derivatives
,
parabolic cylinder functions
Notes:
(
12.8.9
), (
12.8.10
), (
12.8.11
), and (
12.8.12
) can be obtained from (
12.5.1
), (
12.5.6
), (
12.5.7
), and (
12.5.9
), respectively.
Referenced by:
§12.13(i)
Permalink:
http://dlmf.nist.gov/12.8.ii
See also:
Annotations for
§12.8
and
Ch.12
For
m
=
0
,
1
,
2
,
…
,
12.8.9
d
m
d
z
m
(
e
1
4
z
2
U
(
a
,
z
)
)
=
(
−
1
)
m
(
1
2
+
a
)
m
e
1
4
z
2
U
(
a
+
m
,
z
)
,
ⓘ
Symbols:
(
a
)
n
: Pochhammer’s symbol (or shifted factorial)
,
d
f
d
x
: derivative of
f
with respect to
x
,
e
: base of natural logarithm
,
U
(
a
,
z
)
: parabolic cylinder function
,
z
: complex variable
and
a
: real or complex parameter
Referenced by:
§12.8(ii)
Permalink:
http://dlmf.nist.gov/12.8.E9
Encodings:
TeX
,
pMML
,
png
See also:
Annotations for
§12.8(ii)
,
§12.8
and
Ch.12
12.8.10
d
m
d
z
m
(
e
−
1
4
z
2
U
(
a
,
z
)
)
=
(
−
1
)
m
e
−
1
4
z
2
U
(
a
−
m
,
z
)
,
ⓘ
Symbols:
d
f
d
x
: derivative of
f
with respect to
x
,
e
: base of natural logarithm
,
U
(
a
,
z
)
: parabolic cylinder function
,
z
: complex variable
and
a
: real or complex parameter
Referenced by:
§12.8(ii)
Permalink:
http://dlmf.nist.gov/12.8.E10
Encodings:
TeX
,
pMML
,
png
See also:
Annotations for
§12.8(ii)
,
§12.8
and
Ch.12
12.8.11
d
m
d
z
m
(
e
1
4
z
2
V
(
a
,
z
)
)
=
e
1
4
z
2
V
(
a
+
m
,
z
)
,
ⓘ
Symbols:
d
f
d
x
: derivative of
f
with respect to
x
,
e
: base of natural logarithm
,
V
(
a
,
z
)
: parabolic cylinder function
,
z
: complex variable
and
a
: real or complex parameter
Referenced by:
§12.8(ii)
Permalink:
http://dlmf.nist.gov/12.8.E11
Encodings:
TeX
,
pMML
,
png
See also:
Annotations for
§12.8(ii)
,
§12.8
and
Ch.12
12.8.12
d
m
d
z
m
(
e
−
1
4
z
2
V
(
a
,
z
)
)
=
(
−
1
)
m
(
1
2
−
a
)
m
e
−
1
4
z
2
V
(
a
−
m
,
z
)
.
ⓘ
Symbols:
(
a
)
n
: Pochhammer’s symbol (or shifted factorial)
,
d
f
d
x
: derivative of
f
with respect to
x
,
e
: base of natural logarithm
,
V
(
a
,
z
)
: parabolic cylinder function
,
z
: complex variable
and
a
: real or complex parameter
Referenced by:
§12.8(ii)
Permalink:
http://dlmf.nist.gov/12.8.E12
Encodings:
TeX
,
pMML
,
png
See also:
Annotations for
§12.8(ii)
,
§12.8
and
Ch.12