The Fourier series of the periodic Mathieu functions converge absolutely and uniformly on all compact sets in the -plane. For ,
28.4.1 | ||||
28.4.2 | ||||
28.4.3 | ||||
28.4.4 | ||||
28.4.5 | ||||
, | ||||
, , . | ||||
28.4.6 | ||||
, | ||||
, , . | ||||
28.4.7 | ||||
, | ||||
, , . | ||||
28.4.8 | ||||
, | ||||
, , | ||||
28.4.13 | ||||
, | ||||
, | ||||
28.4.14 | ||||
, | ||||
28.4.15 | ||||
, | ||||
28.4.16 | ||||
. | ||||
28.4.17 | ||||
28.4.18 | ||||
28.4.19 | ||||
28.4.20 | ||||
For fixed and fixed ,
28.4.21 | |||
28.4.22 | |||
28.4.23 | |||
As , with fixed () and fixed ,
28.4.24 | ||||
28.4.25 | ||||
28.4.26 | ||||
28.4.27 | ||||
For the basic solutions and see §28.2(ii).