About the Project
14 Legendre and Related FunctionsReal Arguments

§14.12 Integral Representations

Contents
  1. §14.12(i) 1<x<1
  2. §14.12(ii) 1<x<

§14.12(i) 1<x<1

Mehler–Dirichlet Formula

14.12.1 Pνμ(cosθ) =21/2(sinθ)μπ1/2Γ(12μ)0θcos((ν+12)t)(costcosθ)μ+(1/2)dt,
0<θ<π, μ<12.
14.12.2 Pνμ(x) =(1x2)μ/2Γ(μ)x1Pν(t)(tx)μ1dt,
μ>0;

compare (14.6.6).

14.12.3 Qνμ(cosθ)=π1/2Γ(ν+μ+1)(sinθ)μ2μ+1Γ(μ+12)Γ(νμ+1)×(0(sinht)2μ(cosθ+isinθcosht)ν+μ+1dt+0(sinht)2μ(cosθisinθcosht)ν+μ+1dt),
0<θ<π, μ>12, ν±μ>1.

§14.12(ii) 1<x<

14.12.4 Pνμ(x) =21/2Γ(μ+12)(x21)μ/2π1/2Γ(ν+μ+1)Γ(μν)0cosh((ν+12)t)(x+cosht)μ+(1/2)dt,
ν+μ1,2,3,, (μν)>0.
14.12.5 Pνμ(x) =(x21)μ/2Γ(μ)1xPν(t)(xt)μ1dt,
μ>0.
14.12.6 Qνμ(x) =π1/2(x21)μ/22μΓ(μ+12)Γ(νμ+1)0(sinht)2μ(x+(x21)1/2cosht)ν+μ+1dt,
(ν+1)>μ>12.
14.12.7 Pνm(x) =(ν+1)mπ0π(x+(x21)1/2cosϕ)νcos(mϕ)dϕ,
14.12.8 Pnm(x) =2mm!(n+m)!(x21)m/2(2m)!(nm)!π0π(x+(x21)1/2cosϕ)nm(sinϕ)2mdϕ,
nm.
14.12.9 Qnm(x)=1n!0u(x(x21)1/2cosht)ncosh(mt)dt,

where

14.12.10 u=12ln(x+1x1).
14.12.11 Qnm(x)=(x21)m/22n+1n!11(1t2)n(xt)n+m+1dt,
14.12.12 Qnm(x)=1(nm)!Pnm(x)xdt(t21)(Pnm(t))2,
nm.

Neumann’s Integral

14.12.13 Qn(x)=12(n!)11Pn(t)xtdt.

Heine’s Integral

For further integral representations see Erdélyi et al. (1953a, pp. 158–159) and Magnus et al. (1966, pp. 184–190), and for contour integrals and other representations see §14.25.