F. Oberhettinger and T. P. Higgins (1961)Tables of Lebedev, Mehler and Generalized Mehler Transforms.
Mathematical Note
Technical Report 246, Boeing Scientific Research Lab, Seattle.
A. M. Odlyzko (1995)Asymptotic Enumeration Methods.
In Handbook of Combinatorics, Vol. 2, L. Lovász, R. L. Graham, and M. Grötschel (Eds.),
pp. 1063–1229.
S. Okui (1974)Complete elliptic integrals resulting from infinite integrals of Bessel functions.
J. Res. Nat. Bur. Standards Sect. B78B (3), pp. 113–135.
S. Okui (1975)Complete elliptic integrals resulting from infinite integrals of Bessel functions. II.
J. Res. Nat. Bur. Standards Sect. B79B (3-4), pp. 137–170.
A. B. Olde Daalhuis and F. W. J. Olver (1994)Exponentially improved asymptotic solutions of ordinary differential equations. II Irregular singularities of rank one.
Proc. Roy. Soc. London Ser. A445, pp. 39–56.
A. B. Olde Daalhuis and F. W. J. Olver (1995a)Hyperasymptotic solutions of second-order linear differential equations. I.
Methods Appl. Anal.2 (2), pp. 173–197.
A. B. Olde Daalhuis and F. W. J. Olver (1995b)On the calculation of Stokes multipliers for linear differential equations of the second order.
Methods Appl. Anal.2 (3), pp. 348–367.
A. B. Olde Daalhuis and F. W. J. Olver (1998)On the asymptotic and numerical solution of linear ordinary differential equations.
SIAM Rev.40 (3), pp. 463–495.
A. B. Olde Daalhuis (1998a)Hyperasymptotic solutions of higher order linear differential equations with a singularity of rank one.
Proc. Roy. Soc. London Ser. A454, pp. 1–29.
A. B. Olde Daalhuis (1998c)On the resurgence properties of the uniform asymptotic expansion of the incomplete gamma function.
Methods Appl. Anal.5 (4), pp. 425–438.
A. B. Olde Daalhuis (2000)On the asymptotics for late coefficients in uniform asymptotic expansions of integrals with coalescing saddles.
Methods Appl. Anal.7 (4), pp. 727–745.
A. B. Olde Daalhuis (2003a)Uniform asymptotic expansions for hypergeometric functions with large parameters. I.
Analysis and Applications (Singapore)1 (1), pp. 111–120.
A. B. Olde Daalhuis (2003b)Uniform asymptotic expansions for hypergeometric functions with large parameters. II.
Analysis and Applications (Singapore)1 (1), pp. 121–128.
A. B. Olde Daalhuis (2004b)On higher-order Stokes phenomena of an inhomogeneous linear ordinary differential equation.
J. Comput. Appl. Math.169 (1), pp. 235–246.
A. B. Olde Daalhuis (2005a)Hyperasymptotics for nonlinear ODEs. I. A Riccati equation.
Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.461 (2060), pp. 2503–2520.
A. B. Olde Daalhuis (2005b)Hyperasymptotics for nonlinear ODEs. II. The first Painlevé equation and a second-order Riccati equation.
Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.461 (2062), pp. 3005–3021.
A. B. Olde Daalhuis (2010)Uniform asymptotic expansions for hypergeometric functions with large parameters. III.
Analysis and Applications (Singapore)8 (2), pp. 199–210.
M. N. Olevskiĭ (1950)Triorthogonal systems in spaces of constant curvature in which the equation allows a complete separation of variables.
Mat. Sbornik N.S.27(69) (3), pp. 379–426 (Russian).
J. Oliver (1977)An error analysis of the modified Clenshaw method for evaluating Chebyshev and Fourier series.
J. Inst. Math. Appl.20 (3), pp. 379–391.
F. W. J. Olver and F. Stenger (1965)Error bounds for asymptotic solutions of second-order differential equations having an irregular singularity of arbitrary rank.
J. Soc. Indust. Appl. Math. Ser. B Numer. Anal.2 (2), pp. 244–249.
F. W. J. Olver (1950)A new method for the evaluation of zeros of Bessel functions and of other solutions of second-order differential equations.
Proc. Cambridge Philos. Soc.46 (4), pp. 570–580.
F. W. J. Olver (1951)A further method for the evaluation of zeros of Bessel functions and some new asymptotic expansions for zeros of functions of large order.
Proc. Cambridge Philos. Soc.47, pp. 699–712.
F. W. J. Olver (1959)Uniform asymptotic expansions for Weber parabolic cylinder functions of large orders.
J. Res. Nat. Bur. Standards Sect. B63B, pp. 131–169.
F. W. J. Olver (Ed.) (1960)Bessel Functions. Part III: Zeros and Associated Values.
Royal Society Mathematical Tables, Volume 7, Cambridge University Press, Cambridge-New York.
F. W. J. Olver (1962)Tables for Bessel Functions of Moderate or Large Orders.
National Physical Laboratory Mathematical Tables, Vol. 6.
Department of Scientific and Industrial Research, Her Majesty’s Stationery Office, London.
F. W. J. Olver (1965)On the asymptotic solution of second-order differential equations having an irregular singularity of rank one, with an application to Whittaker functions.
J. Soc. Indust. Appl. Math. Ser. B Numer. Anal.2 (2), pp. 225–243.
F. W. J. Olver (1976)Improved error bounds for second-order differential equations with two turning points.
J. Res. Nat. Bur. Standards Sect. B80B (4), pp. 437–440.
F. W. J. Olver (1977b)Connection formulas for second-order differential equations having an arbitrary number of turning points of arbitrary multiplicities.
SIAM J. Math. Anal.8 (4), pp. 673–700.
F. W. J. Olver (1978)General connection formulae for Liouville-Green approximations in the complex plane.
Philos. Trans. Roy. Soc. London Ser. A289, pp. 501–548.
F. W. J. Olver (1980b)Whittaker functions with both parameters large: Uniform approximations in terms of parabolic cylinder functions.
Proc. Roy. Soc. Edinburgh Sect. A86 (3-4), pp. 213–234.
F. W. J. Olver (1983)Error Analysis of Complex Arithmetic.
In Computational Aspects of Complex Analysis (Braunlage, 1982), H. Werner, L. Wuytack, E. Ng, and H. J. Bünger (Eds.),
NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., Vol. 102, pp. 279–292.
F. W. J. Olver (1991a)Uniform, exponentially improved, asymptotic expansions for the generalized exponential integral.
SIAM J. Math. Anal.22 (5), pp. 1460–1474.
F. W. J. Olver (1991b)Uniform, exponentially improved, asymptotic expansions for the confluent hypergeometric function and other integral transforms.
SIAM J. Math. Anal.22 (5), pp. 1475–1489.
F. W. J. Olver (1993a)Exponentially-improved asymptotic solutions of ordinary differential equations I: The confluent hypergeometric function.
SIAM J. Math. Anal.24 (3), pp. 756–767.
F. W. J. Olver (1994a)Asymptotic expansions of the coefficients in asymptotic series solutions of linear differential equations.
Methods Appl. Anal.1 (1), pp. 1–13.
F. W. J. Olver (1994b)The Generalized Exponential Integral.
In Approximation and Computation (West Lafayette, IN, 1993), R. V. M. Zahar (Ed.),
International Series of Numerical Mathematics, Vol. 119, pp. 497–510.
F. W. J. Olver (1997a)Asymptotic solutions of linear ordinary differential equations at an irregular singularity of rank unity.
Methods Appl. Anal.4 (4), pp. 375–403.
P. J. Olver (1993b)Applications of Lie Groups to Differential Equations.
2nd edition, Graduate Texts in Mathematics, Vol. 107, Springer-Verlag, New York.
M. Onoe (1955)Formulae and Tables, The Modified Quotients of Cylinder Functions.
Technical report
Technical Report UDC 517.564.3:518.25, Vol. 4, Report of the Institute of Industrial Science, University of Tokyo, Institute of Industrial Science, Chiba City, Japan.
C. Osácar, J. Palacián, and M. Palacios (1995)Numerical evaluation of the dilogarithm of complex argument.
Celestial Mech. Dynam. Astronom.62 (1), pp. 93–98.