B. R. Fabijonas, D. W. Lozier, and F. W. J. Olver (2004)Computation of complex Airy functions and their zeros using asymptotics and the differential equation.
ACM Trans. Math. Software30 (4), pp. 471–490.
B. R. Fabijonas, D. W. Lozier, and J. M. Rappoport (2003)Algorithms and codes for the Macdonald function: Recent progress and comparisons.
J. Comput. Appl. Math.161 (1), pp. 179–192.
B. R. Fabijonas and F. W. J. Olver (1999)On the reversion of an asymptotic expansion and the zeros of the Airy functions.
SIAM Rev.41 (4), pp. 762–773.
V. N. Faddeyeva and N. M. Terent’ev (1961)Tables of Values of the Function for Complex Argument.
Edited by V. A. Fok; translated from the Russian by D. G. Fry.
Mathematical Tables Series, Vol. 11, Pergamon Press, Oxford.
P. Falloon (2001)Theory and Computation of Spheroidal Harmonics with General Arguments.
Master’s Thesis, The University of Western Australia, Department of Physics.
ⓘ
Notes:
Contains Mathematica package for spheroidal wave functions
of complex arguments with complex parameters.
D. F. Fang and J. F. Shriner (1992)A computer program for the calculation of angular-momentum coupling coefficients.
Comput. Phys. Comm.70 (1), pp. 147–153.
J. Faraut and A. Korányi (1994)Analysis on Symmetric Cones.
Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford-New York.
J. Faraut (1982)Un théorème de Paley-Wiener pour la transformation de Fourier sur un espace riemannien symétrique de rang un.
J. Funct. Anal.49 (2), pp. 230–268.
S. Farid Khwaja and A. B. Olde Daalhuis (2014)Uniform asymptotic expansions for hypergeometric functions with large parameters IV.
Anal. Appl. (Singap.)12 (6), pp. 667–710.
The “Freely Distributable LIBM” package provides implementations of standard
elementary functions plus a few higher functions, e.g. gamma.
Double precision, maximum accuracy 20S.
Developed by Sun Microsystems.
M. V. Fedoryuk (1991)Asymptotics of the spectrum of the Heun equation and of Heun functions.
Izv. Akad. Nauk SSSR Ser. Mat.55 (3), pp. 631–646 (Russian).
ⓘ
Notes:
In Russian. English translation: Math. USSR-Izv., 38(1992),
no. 3, pp. 621–635 (1992)
C. Ferreira, J. L. López, and E. Pérez Sinusía (2005)Incomplete gamma functions for large values of their variables.
Adv. in Appl. Math.34 (3), pp. 467–485.
H. E. Fettis, J. C. Caslin, and K. R. Cramer (1973)Complex zeros of the error function and of the complementary error function.
Math. Comp.27 (122), pp. 401–407.
H. E. Fettis and J. C. Caslin (1964)Tables of Elliptic Integrals of the First, Second, and Third Kind.
Technical report
Technical Report ARL 64-232, Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio.
ⓘ
Notes:
Reviewed in Math. Comp. v. 1919(1965)509. Table
erratum: Math. Comp. v. 20 (1966), no. 96, pp. 639-640.
H. E. Fettis and J. C. Caslin (1969)A Table of the Complete Elliptic Integral of the First Kind for Complex Values of the Modulus. Part I.
Technical report
Technical Report ARL 69-0172, Aerospace Research Laboratories, Office of Aerospace Research, Wright-Patterson Air Force Base, Ohio.
ⓘ
Notes:
Table erratum: Math. Comp. v. 36 (1981), no. 153, p. 318. Part II
of this report, with the same date but numbered ARL 69-0173, again puts
but with as parameter and as variable instead
of the other way around. Part III, dated May 1970 and numbered
ARL 70-0081, contains tables of auxiliary functions to help interpolation.
J. L. Fields and Y. L. Luke (1963a)Asymptotic expansions of a class of hypergeometric polynomials with respect to the order. II.
J. Math. Anal. Appl.7 (3), pp. 440–451.
J. L. Fields and Y. L. Luke (1963b)Asymptotic expansions of a class of hypergeometric polynomials with respect to the order.
J. Math. Anal. Appl.6 (3), pp. 394–403.
J. L. Fields (1965)Asymptotic expansions of a class of hypergeometric polynomials with respect to the order. III.
J. Math. Anal. Appl.12 (3), pp. 593–601.
N. J. Fine (1988)Basic Hypergeometric Series and Applications.
Mathematical Surveys and Monographs, Vol. 27, American Mathematical Society, Providence, RI.
A. Fletcher, J. C. P. Miller, L. Rosenhead, and L. J. Comrie (1962)An Index of Mathematical Tables. Vols. I, II.
2nd edition, Published for Scientific Computing Service Ltd., London, by
Addison-Wesley Publishing Co., Inc., Reading, MA.
V. A. Fock (1965)Electromagnetic Diffraction and Propagation Problems.
International Series of Monographs on Electromagnetic Waves,
Vol. 1, Pergamon Press, Oxford.
A. S. Fokas and M. J. Ablowitz (1982)On a unified approach to transformations and elementary solutions of Painlevé equations.
J. Math. Phys.23 (11), pp. 2033–2042.
A. S. Fokas, A. R. Its, and A. V. Kitaev (1991)Discrete Painlevé equations and their appearance in quantum gravity.
Comm. Math. Phys.142 (2), pp. 313–344.
A. S. Fokas, A. R. Its, and X. Zhou (1992)Continuous and Discrete Painlevé Equations.
In Painlevé Transcendents: Their Asymptotics and Physical Applications, D. Levi and P. Winternitz (Eds.),
NATO Adv. Sci. Inst. Ser. B Phys., Vol. 278, pp. 33–47.
ⓘ
Notes:
Proc. NATO Adv. Res. Workshop, Sainte-Adèle, Canada, 1990
A. S. Fokas and Y. C. Yortsos (1981)The transformation properties of the sixth Painlevé equation and one-parameter families of solutions.
Lett. Nuovo Cimento (2)30 (17), pp. 539–544.
A. S. Fokas, A. R. Its, A. A. Kapaev, and V. Yu. Novokshënov (2006)Painlevé Transcendents: The Riemann-Hilbert Approach.
Mathematical Surveys and Monographs, Vol. 128, American Mathematical Society, Providence, RI.
W. B. Ford (1960)Studies on Divergent Series and Summability & The Asymptotic Developments of Functions Defined by Maclaurin Series.
Chelsea Publishing Co., New York.
ⓘ
Notes:
Reprint with corrections of two books published originally in 1916 and 1936.
P. J. Forrester and N. S. Witte (2001)Application of the -function theory of Painlevé equations to random matrices: PIV, PII and the GUE.
Comm. Math. Phys.219 (2), pp. 357–398.
P. J. Forrester and N. S. Witte (2002)Application of the -function theory of Painlevé equations to random matrices: , , the LUE, JUE, and CUE.
Comm. Pure Appl. Math.55 (6), pp. 679–727.
P. J. Forrester and N. S. Witte (2004)Application of the -function theory of Painlevé equations to random matrices: , the JUE, CyUE, cJUE and scaled limits.
Nagoya Math. J.174, pp. 29–114.
L. Fox (1960)Tables of Weber Parabolic Cylinder Functions and Other Functions for Large Arguments.
National Physical Laboratory Mathematical Tables, Vol. 4.
Department of Scientific and Industrial Research, Her Majesty’s Stationery Office, London.
C. K. Frederickson and P. L. Marston (1992)Transverse cusp diffraction catastrophes produced by the reflection of ultrasonic tone bursts from a curved surface in water.
J. Acoust. Soc. Amer.92 (5), pp. 2869–2877.
C. K. Frederickson and P. L. Marston (1994)Travel time surface of a transverse cusp caustic produced by reflection of acoustical transients from a curved metal surface.
J. Acoust. Soc. Amer.95 (2), pp. 650–660.
C. L. Frenzen (1992)Error bounds for the asymptotic expansion of the ratio of two gamma functions with complex argument.
SIAM J. Math. Anal.23 (2), pp. 505–511.
B. R. Frieden (1971)Evaluation, design and extrapolation methods for optical signals, based on use of the prolate functions.
In Progress in Optics, E. Wolf (Ed.),
Vol. 9, pp. 311–407.
R. Fuchs (1907)Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singulären Stellen.
Math. Ann.63 (3), pp. 301–321.
Y. Fukui and T. Horiguchi (1992)Characteristic values of the integral equation satisfied by the Mathieu functions and its application to a system with chirality-pair interaction on a one-dimensional lattice.
Phys. A190 (3-4), pp. 346–362.
L. W. Fullerton (1977)Portable Special Function Routines.
In Portability of Numerical Software (Oak Brook, Illinois, 1976), W. R. Cowell (Ed.),
Lecture Notes in Computer Science, Vol. 57, pp. 452–483.
Y. V. Fyodorov (2005)Introduction to the Random Matrix Theory: Gaussian Unitary Ensemble and Beyond.
In Recent Perspectives in Random Matrix Theory and Number Theory,
London Math. Soc. Lecture Note Ser., Vol. 322, pp. 31–78.