# Notations N

$\cap$
intersection; Common Notations and Definitions
$\mathbb{N}$
set of all positive integers; Common Notations and Definitions
$\mathcal{N}$
winding number; (1.9.32)
$N\left(\NVar{z}\right)$
Airy modulus function; (9.8.7)
$N_{\NVar{\nu}}\left(\NVar{x}\right)$
modulus of derivatives of Bessel functions; (10.18.2)
$N_{\NVar{\nu}}(\NVar{z})=Y_{\nu}\left(z\right)$
common alternative notation; §10.1
$N(\NVar{n},\NVar{k})$
Narayana number; (26.6.3)
$\nabla_{\NVar{x}}$
backward difference; §18.1(i)
$\operatorname{nc}\left(\NVar{z},\NVar{k}\right)$
Jacobian elliptic function; (22.2.5)
$\operatorname{nd}\left(\NVar{z},\NVar{k}\right)$
Jacobian elliptic function; (22.2.6)
$\mathrm{Ne}_{\NVar{n}}^{(1,2)}(\NVar{z},\NVar{q})=\sqrt{\tfrac{1}{2}\pi}g_{% \mathit{o},n}(h)\operatorname{se}_{n}'\left(0,q\right){\operatorname{Ms}^{(3,4% )}_{n}}\left(z,h\right)$
notation used by Arscott (1964b), McLachlan (1947); §28.1
$\operatorname{ns}\left(\NVar{z},\NVar{k}\right)$
Jacobian elliptic function; (22.2.4)
$\nu\left(\NVar{n}\right)$
number of distinct primes dividing a number; §27.2(i)