About the Project
16 Generalized Hypergeometric Functions & Meijer G-FunctionGeneralized Hypergeometric Functions

§16.10 Expansions in Series of Fqp Functions

The following expansion, with appropriate conditions and together with similar results, is given in Fields and Wimp (1961):

16.10.1 Fq+sp+r(a1,,ap,c1,,crb1,,bq,d1,,ds;zζ)=k=0(a)k(α)k(β)k(-z)k(b)k(γ+k)kk!Fq+1p+2(α+k,β+k,a1+k,,ap+kγ+2k+1,b1+k,,bq+k;z)×Fs+2r+2(-k,γ+k,c1,,crα,β,d1,,ds;ζ).

Here α, β, and γ are free real or complex parameters.

The next expansion is given in Nørlund (1955, equation (1.21)):

16.10.2 Fpp+1(a1,,ap+1b1,,bp;zζ)=(1-z)-a1k=0(a1)kk!Fpp+1(-k,a2,,ap+1b1,,bp;ζ)(zz-1)k.

When |ζ-1|<1 the series on the right-hand side converges in the half-plane z<12.

Expansions of the form n=1(±1)nFp+1p(a;b;-n2z2) are discussed in Miller (1997), and further series of generalized hypergeometric functions are given in Luke (1969b, Chapter 9), Luke (1975, §§5.10.2 and 5.11), and Prudnikov et al. (1990, §§5.3, 6.8–6.9).