28.4 Fourier Series28.6 Expansions for Small q

§28.5 Second Solutions \mathop{\mathrm{fe}_{{n}}\/}\nolimits, \mathop{\mathrm{ge}_{{n}}\/}\nolimits

Contents

§28.5(i) Definitions

Theorem of Ince (1922)

If a nontrivial solution of Mathieu’s equation with q\neq 0 has period \pi or 2\pi, then any linearly independent solution cannot have either period.

Second solutions of (28.2.1) are given by

28.5.1\mathop{\mathrm{fe}_{{n}}\/}\nolimits\!\left(z,q\right)=C_{n}(q)\left(z\mathop{\mathrm{ce}_{{n}}\/}\nolimits\!\left(z,q\right)+f_{n}(z,q)\right),

when a=\mathop{a_{{n}}\/}\nolimits\!\left(q\right), n=0,1,2,\dots, and by

28.5.2\mathop{\mathrm{ge}_{{n}}\/}\nolimits\!\left(z,q\right)=S_{n}(q)\left(z\mathop{\mathrm{se}_{{n}}\/}\nolimits\!\left(z,q\right)+g_{n}(z,q)\right),

when a=\mathop{b_{{n}}\/}\nolimits\!\left(q\right), n=1,2,3,\dots. For m=0,1,2,\dots, we have

28.5.3\begin{array}[]{ll}f_{{2m}}(z,q)&\mbox{$\pi$-periodic, odd},\\
f_{{2m+1}}(z,q)&\mbox{$\pi$-antiperiodic, odd},\end{array}

and

28.5.4\begin{array}[]{ll}g_{{2m+1}}(z,q)&\mbox{$\pi$-antiperiodic, even},\\
g_{{2m+2}}(z,q)&\mbox{$\pi$-periodic, even};\end{array}

compare §28.2(vi). The functions f_{n}(z,q), g_{n}(z,q) are unique.

The factors C_{n}(q) and S_{n}(q) in (28.5.1) and (28.5.2) are normalized so that

28.5.5(C_{n}(q))^{2}\int _{0}^{{2\pi}}(f_{n}(x,q))^{2}dx=(S_{n}(q))^{2}\int _{0}^{{2\pi}}(g_{n}(x,q))^{2}dx=\pi.

As q\to 0 with n\neq 0, C_{n}(q)\to 0, S_{n}(q)\to 0, C_{n}(q)f_{n}(z,q)\to\mathop{\sin\/}\nolimits nz, and S_{n}(q)g_{n}(z,q)\to\mathop{\cos\/}\nolimits nz. This determines the signs of C_{n}(q) and S_{n}(q). (Other normalizations for C_{n}(q) and S_{n}(q) can be found in the literature, but most formulas—including connection formulas—are unaffected since \mathop{\mathrm{fe}_{{n}}\/}\nolimits\!\left(z,q\right)/C_{n}(q) and \mathop{\mathrm{ge}_{{n}}\/}\nolimits\!\left(z,q\right)/S_{n}(q) are invariant.)

28.5.6
C_{{2m}}(-q)=C_{{2m}}(q),
C_{{2m+1}}(-q)=S_{{2m+1}}(q),
S_{{2m+2}}(-q)=S_{{2m+2}}(q).

As a consequence of the factor z on the right-hand sides of (28.5.1), (28.5.2), all solutions of Mathieu’s equation that are linearly independent of the periodic solutions are unbounded as z\to\pm\infty on \Real.

Wronskians

For further information on C_{n}(q), S_{n}(q), and expansions of f_{n}(z,q), g_{n}(z,q) in Fourier series or in series of \mathop{\mathrm{ce}_{{n}}\/}\nolimits, \mathop{\mathrm{se}_{{n}}\/}\nolimits functions, see McLachlan (1947, Chapter VII) or Meixner and Schäfke (1954, §2.72).

§28.5(ii) Graphics: Line Graphs of Second Solutions of Mathieu’s Equation

Odd Second Solutions

See accompanying text
Figure 28.5.1: \mathop{\mathrm{fe}_{{0}}\/}\nolimits\!\left(x,0.5\right) for 0\leq x\leq 2\pi and (for comparison) \mathop{\mathrm{ce}_{{0}}\/}\nolimits\!\left(x,0.5\right). Magnify
See accompanying text
Figure 28.5.2: \mathop{\mathrm{fe}_{{0}}\/}\nolimits\!\left(x,1\right) for 0\leq x\leq 2\pi and (for comparison) \mathop{\mathrm{ce}_{{0}}\/}\nolimits\!\left(x,1\right). Magnify
See accompanying text
Figure 28.5.3: \mathop{\mathrm{fe}_{{1}}\/}\nolimits\!\left(x,0.5\right) for 0\leq x\leq 2\pi and (for comparison) \mathop{\mathrm{ce}_{{1}}\/}\nolimits\!\left(x,0.5\right). Magnify
See accompanying text
Figure 28.5.4: \mathop{\mathrm{fe}_{{1}}\/}\nolimits\!\left(x,1\right) for 0\leq x\leq 2\pi and (for comparison) \mathop{\mathrm{ce}_{{1}}\/}\nolimits\!\left(x,1\right). Magnify

Even Second Solutions

See accompanying text
Figure 28.5.5: \mathop{\mathrm{ge}_{{1}}\/}\nolimits\!\left(x,0.5\right) for 0\leq x\leq 2\pi and (for comparison) \mathop{\mathrm{se}_{{1}}\/}\nolimits\!\left(x,0.5\right). Magnify
See accompanying text
Figure 28.5.6: \mathop{\mathrm{ge}_{{1}}\/}\nolimits\!\left(x,1\right) for 0\leq x\leq 2\pi and (for comparison) \mathop{\mathrm{se}_{{1}}\/}\nolimits\!\left(x,1\right). Magnify