17.1 Special Notation17.3 q-Elementary and q-Special Functions

§17.2 Calculus

Contents

§17.2(i) q-Calculus

For n=0,1,2,\dots,

17.2.1\left(a;q\right)_{{n}}=(1-a)(1-aq)\cdots(1-aq^{{n-1}}),
17.2.2\left(a;q\right)_{{-n}}=\frac{1}{\left(aq^{{-n}};q\right)_{{n}}}=\frac{(-q/a)^{n}q^{{\binom{n}{2}}}}{\left(q/a;q\right)_{{n}}}.

For \nu\in\Complex

17.2.3\left(a;q\right)_{{\nu}}=\prod _{{j=0}}^{\infty}\left(\frac{1-aq^{j}}{1-aq^{{\nu+j}}}\right),

when this product converges.

17.2.7\left(a;q^{{-1}}\right)_{{n}}=\left(a^{{-1}};q\right)_{{n}}(-a)^{n}q^{{-\binom{n}{2}}},
17.2.8\frac{\left(a;q^{{-1}}\right)_{{n}}}{\left(b;q^{{-1}}\right)_{{n}}}=\frac{\left(a^{{-1}};q\right)_{{n}}}{\left(b^{{-1}};q\right)_{{n}}}\left(\frac{a}{b}\right)^{n},
17.2.9\left(a;q\right)_{{n}}=\left(q^{{1-n}}/a;q\right)_{{n}}(-a)^{n}q^{{\binom{n}{2}}},
17.2.10\frac{\left(a;q\right)_{{n}}}{\left(b;q\right)_{{n}}}=\frac{\left(q^{{1-n}}/a;q\right)_{{n}}}{\left(q^{{1-n}}/b;q\right)_{{n}}}\left(\frac{a}{b}\right)^{n},
17.2.11\left(aq^{{-n}};q\right)_{{n}}=\left(q/a;q\right)_{{n}}\left(-\frac{a}{q}\right)^{n}q^{{-\binom{n}{2}}},
17.2.12\frac{\left(aq^{{-n}};q\right)_{{n}}}{\left(bq^{{-n}};q\right)_{{n}}}=\frac{\left(q/a;q\right)_{{n}}}{\left(q/b;q\right)_{{n}}}\left(\frac{a}{b}\right)^{n}.
17.2.13\left(a;q\right)_{{n-k}}=\frac{\left(a;q\right)_{{n}}}{\left(q^{{1-n}}/a;q\right)_{{k}}}\left(-\frac{q}{a}\right)^{k}q^{{\binom{k}{2}-nk}},
17.2.14\frac{\left(a;q\right)_{{n-k}}}{\left(b;q\right)_{{n-k}}}=\frac{\left(a;q\right)_{{n}}}{\left(b;q\right)_{{n}}}\frac{\left(q^{{1-n}}/b;q\right)_{{k}}}{\left(q^{{1-n}}/a;q\right)_{{k}}}\left(\frac{b}{a}\right)^{k},
17.2.15\left(aq^{{-n}};q\right)_{{k}}=\frac{\left(a;q\right)_{{k}}\left(q/a;q\right)_{{n}}}{\left(q^{{1-k}}/a;q\right)_{{n}}}q^{{-nk}},
17.2.16\left(aq^{{-n}};q\right)_{{n-k}}=\frac{\left(q/a;q\right)_{{n}}}{\left(q/a;q\right)_{{k}}}\left(-\frac{a}{q}\right)^{{n-k}}q^{{\binom{k}{2}-\binom{n}{2}}},
17.2.19\left(a;q\right)_{{2n}}=\left(a,aq;q^{2}\right)_{{n}},

more generally,

17.2.20\left(a;q\right)_{{kn}}=\left(a,aq,\dots,aq^{{k-1}};q^{k}\right)_{{n}}.
17.2.21\left(a^{2};q^{2}\right)_{{n}}=\left(a;q\right)_{{n}}\left(-a;q\right)_{{n}},
17.2.22\frac{\left(qa^{{\frac{1}{2}}},-aq^{{\frac{1}{2}}};q\right)_{{n}}}{\left(a^{{\frac{1}{2}}},-a^{{\frac{1}{2}}};q\right)_{{n}}}=\frac{\left(aq^{2};q^{2}\right)_{{n}}}{\left(a;q^{2}\right)_{{n}}}=\frac{1-aq^{{2n}}}{1-a},

more generally,

17.2.23\frac{\left(aq^{{\frac{1}{k}}},q\omega _{k}a^{{\frac{1}{k}}},\dots,q\omega _{k}^{{k-1}}a^{{\frac{1}{k}}};q\right)_{{n}}}{\left(a^{{\frac{1}{k}}},\omega _{k}a^{{\frac{1}{k}}},\dots,\omega _{k}^{{k-1}}a^{{\frac{1}{k}}};q\right)_{{n}}}=\frac{\left(aq^{k};q^{k}\right)_{{n}}}{\left(a;q^{k}\right)_{{n}}}=\frac{1-aq^{{kn}}}{1-a},

where \omega _{k}=e^{{2\pi i/k}}.

17.2.24\lim _{{\tau\to 0}}\left(a/\tau;q\right)_{{n}}\tau^{n}=\lim _{{\sigma\to\infty}}\left(a\sigma;q\right)_{{n}}\sigma^{{-n}}=(-a)^{n}q^{{\binom{n}{2}}},
17.2.25\lim _{{\tau\to 0}}\frac{\left(a/\tau;q\right)_{{n}}}{\left(b/\tau;q\right)_{{n}}}=\lim _{{\sigma\to\infty}}\frac{\left(a\sigma;q\right)_{{n}}}{\left(b\sigma;q\right)_{{n}}}=\left(\frac{a}{b}\right)^{n},
17.2.26\lim _{{\tau\to 0}}\frac{\left(a/\tau;q\right)_{{n}}\left(b/\tau;q\right)_{{n}}}{\left(c/\tau^{2};q\right)_{{n}}}=(-1)^{n}\left(\frac{ab}{c}\right)^{n}q^{{\binom{n}{2}}}.

§17.2(ii) Binomial Coefficients

17.2.27\genfrac{[}{]}{0.0pt}{}{n}{m}_{{q}}=\frac{\left(q;q\right)_{{n}}}{\left(q;q\right)_{{m}}\left(q;q\right)_{{n-m}}}\\
=\frac{\left(q^{{-n}};q\right)_{{m}}(-1)^{m}q^{{nm-\binom{m}{2}}}}{\left(q;q\right)_{{m}}},
17.2.28\lim _{{q\to 1}}\genfrac{[}{]}{0.0pt}{}{n}{m}_{{q}}=\binom{n}{m}=\frac{n!}{m!(n-m)!},
17.2.29\genfrac{[}{]}{0.0pt}{}{m+n}{m}_{{q}}=\frac{\left(q^{{n+1}};q\right)_{{m}}}{\left(q;q\right)_{{m}}},
17.2.33\lim _{{n\to\infty}}\genfrac{[}{]}{0.0pt}{}{n}{m}_{{q}}=\frac{1}{\left(q;q\right)_{{m}}}=\frac{1}{(1-q)(1-q^{2})\cdots(1-q^{m})},
17.2.34\lim _{{n\to\infty}}\genfrac{[}{]}{0.0pt}{}{rn+u}{sn+t}_{{q}}=\frac{1}{\left(q;q\right)_{{\infty}}}=\prod _{{j=1}}^{\infty}\frac{1}{(1-q^{j})},

provided that r>s.

§17.2(iii) Binomial Theorem

In the limit as q\to 1, (17.2.35) reduces to the standard binomial theorem

17.2.36\sum _{{j=0}}^{n}\binom{n}{j}(-z)^{j}=(1-z)^{n}.

When n\to\infty in (17.2.35), and when m\to\infty in (17.2.38), the results become convergent infinite series and infinite products (see (17.5.1) and (17.5.4)).

§17.2(iv) Derivatives

The q-derivatives of f(z) are defined by

17.2.41\mathcal{D}_{q}f(z)=\begin{cases}\dfrac{f(z)-f(zq)}{(1-q)z},&z\neq 0,\\
f^{{\prime}}(0),&z=0,\end{cases}

and

When q\to 1 the q-derivatives converge to the corresponding ordinary derivatives.

Product Rule

17.2.43\mathcal{D}_{q}(f(z)g(z))=g(z)f^{{[1]}}(z)+f(zq)g^{{[1]}}(z).

Leibniz Rule

q-differential equations are considered in §17.6(iv).

§17.2(v) Integrals

If f(x) is continuous at x=0, then

17.2.45\int _{0}^{1}f(x){d}_{q}x=(1-q)\sum _{{j=0}}^{\infty}f(q^{j})q^{j},

and more generally,

17.2.46\int _{0}^{a}f(x){d}_{q}x=a(1-q)\sum _{{j=0}}^{\infty}f(aq^{j})q^{j}.

If f(x) is continuous on [0,a], then

17.2.47\lim _{{q\to 1-}}\int _{0}^{a}f(x){d}_{q}x=\int _{0}^{a}f(x)dx.

Infinite Range

§17.2(vi) Rogers–Ramanujan Identities

17.2.491+\sum _{{n=1}}^{\infty}\frac{q^{{n^{2}}}}{(1-q)(1-q^{2})\cdots(1-q^{n})}=\prod _{{n=0}}^{\infty}\frac{1}{(1-q^{{5n+1}})(1-q^{{5n+4}})},
17.2.501+\sum _{{n=1}}^{\infty}\frac{q^{{n^{2}+n}}}{(1-q)(1-q^{2})\cdots(1-q^{n})}=\prod _{{n=0}}^{\infty}\frac{1}{(1-q^{{5n+2}})(1-q^{{5n+3}})}.

These identities are the first in a large collection of similar results. See §17.14.