23 Weierstrass Elliptic and Modular Functions23.2 Definitions and Periodic Properties

§23.1 Special Notation

(For other notation see Notation for the Special Functions.)

\mathbb{L} lattice in \Complex.
\ell,n integers.
m integer, except in §23.20(ii).
z=x+iy complex variable, except in §§23.20(ii), 23.21(iii).
[a,b] or (a,b) closed, or open, straight-line segment joining a and b, whether or not a and b are real.
primes derivatives with respect to the variable, except where indicated otherwise.
\mathop{K\/}\nolimits\!\left(k\right), {\mathop{K\/}\nolimits^{{\prime}}}\!\left(k\right) complete elliptic integrals (§19.2(i)).
2\omega _{1},2\omega _{3} lattice generators (\imagpart{(\omega _{3}/\omega _{1})}>0).
\omega _{2} -\omega _{1}-\omega _{3}.
\tau=\omega _{3}/\omega _{1} lattice parameter (\imagpart{\tau}>0).
q=e^{{i\pi\omega _{3}/\omega _{1}}}
\phantom{q}=e^{{i\pi\tau}} nome.
g_{2},g_{3} lattice invariants.
e_{1},e_{2},e_{3} zeros of Weierstrass normal cubic 4z^{3}-g_{2}z-g_{3}.
\Delta discriminant g_{2}^{3}-27g_{3}^{2}.
n\Integer set of all integer multiples of n.
S_{1}\setmod S_{2} set of all elements of S_{1}, modulo elements of S_{2}. Thus two elements of S_{1}\setmod S_{2} are equivalent if they are both in S_{1} and their difference is in S_{2}. (For an example see §20.12(ii).)
G\times H Cartesian product of groups G and H, that is, the set of all pairs of elements (g,h) with group operation (g_{1},h_{1})+(g_{2},h_{2})=(g_{1}+g_{2},h_{1}+h_{2}).

The main functions treated in this chapter are the Weierstrass \mathop{\wp\/}\nolimits-function \mathop{\wp\/}\nolimits\!\left(z\right)=\mathop{\wp\/}\nolimits\!\left(z|\mathbb{L}\right)=\mathop{\wp\/}\nolimits\!\left(z;g_{2},g_{3}\right); the Weierstrass zeta function \mathop{\zeta\/}\nolimits\!\left(z\right)=\mathop{\zeta\/}\nolimits\!\left(z|\mathbb{L}\right)=\mathop{\zeta\/}\nolimits\!\left(z;g_{2},g_{3}\right); the Weierstrass sigma function \mathop{\sigma\/}\nolimits\!\left(z\right)=\mathop{\sigma\/}\nolimits\!\left(z|\mathbb{L}\right)=\mathop{\sigma\/}\nolimits\!\left(z;g_{2},g_{3}\right); the elliptic modular function \mathop{\lambda\/}\nolimits\!\left(\tau\right); Klein’s complete invariant \mathop{J\/}\nolimits\!\left(\tau\right); Dedekind’s eta function \mathop{\eta\/}\nolimits\!\left(\tau\right).

Other Notations

Whittaker and Watson (1927) requires only \imagpart{(\omega _{3}/\omega _{1})}\neq 0, instead of \imagpart{(\omega _{3}/\omega _{1})}>0. Abramowitz and Stegun (1964, Chapter 18) considers only rectangular and rhombic lattices (§23.5); \omega _{1}, \omega _{3} are replaced by \omega, \omega^{{\prime}} for the former and by \omega _{2}, \omega^{{\prime}} for the latter. Silverman and Tate (1992) and Koblitz (1993) replace 2\omega _{1} and 2\omega _{3} by \omega _{1} and \omega _{3}, respectively. Walker (1996) normalizes 2\omega _{1}=1, 2\omega _{3}=\tau, and uses homogeneity (§23.10(iv)). McKean and Moll (1999) replaces 2\omega _{1} and 2\omega _{3} by \omega _{1} and \omega _{2}, respectively.