27.8 Dirichlet Characters27.10 Periodic Number-Theoretic Functions

§27.9 Quadratic Characters

For an odd prime p, the Legendre symbol \mathop{(n|p)\/}\nolimits is defined as follows. If p divides n, then the value of \mathop{(n|p)\/}\nolimits is 0. If p does not divide n, then \mathop{(n|p)\/}\nolimits has the value 1 when the quadratic congruence x^{2}\equiv n\;\;(\mathop{{\rm mod}}p) has a solution, and the value −1 when this congruence has no solution. The Legendre symbol \mathop{(n|p)\/}\nolimits, as a function of n, is a Dirichlet character (mod p). It is sometimes written as (\frac{n}{p}). Special values include:

27.9.1\mathop{(-1|p)\/}\nolimits=(-1)^{{(p-1)/2}},
27.9.2\mathop{(2|p)\/}\nolimits=(-1)^{{(p^{2}-1)/8}}.

If p,q are distinct odd primes, then the quadratic reciprocity law states that

27.9.3\mathop{(p|q)\/}\nolimits\mathop{(q|p)\/}\nolimits=(-1)^{{(p-1)(q-1)/4}}.

If an odd integer P has prime factorization P=\prod _{{r=1}}^{{\mathop{\nu\/}\nolimits\!\left(n\right)}}p^{{a_{r}}}_{r}, then the Jacobi symbol \mathop{(n|P)\/}\nolimits is defined by \mathop{(n|P)\/}\nolimits=\prod _{{r=1}}^{{\mathop{\nu\/}\nolimits\!\left(n\right)}}{\mathop{(n|p_{r})\/}\nolimits^{{a_{r}}}}, with \mathop{(n|1)\/}\nolimits=1. The Jacobi symbol \mathop{(n|P)\/}\nolimits is a Dirichlet character (mod P). Both (27.9.1) and (27.9.2) are valid with p replaced by P; the reciprocity law (27.9.3) holds if p,q are replaced by any two relatively prime odd integers P,Q.