34.3 Basic Properties: 3j Symbol34.5 Basic Properties: 6j Symbol

§34.4 Definition: 6j Symbol

The 6j symbol is defined by the following double sum of products of 3j symbols:

34.4.1\begin{Bmatrix}j_{{1}}&j_{{2}}&j_{{3}}\\
l_{{1}}&l_{{2}}&l_{{3}}\end{Bmatrix}=\sum _{{m_{r}m^{{\prime}}_{s}}}(-1)^{{l_{{1}}+m^{{\prime}}_{{1}}+l_{{2}}+m^{{\prime}}_{{2}}+l_{{3}}+m^{{\prime}}_{{3}}}}\*\begin{pmatrix}j_{1}&j_{2}&j_{3}\\
m_{1}&m_{2}&m_{3}\end{pmatrix}\begin{pmatrix}j_{1}&l_{2}&l_{3}\\
m_{1}&m^{{\prime}}_{2}&-m^{{\prime}}_{3}\end{pmatrix}\begin{pmatrix}l_{1}&j_{2}&l_{3}\\
-m^{{\prime}}_{1}&m_{2}&m^{{\prime}}_{3}\end{pmatrix}\begin{pmatrix}l_{1}&l_{2}&j_{3}\\
m^{{\prime}}_{1}&-m^{{\prime}}_{2}&m_{3}\end{pmatrix},

where the summation is taken over all admissible values of the m’s and m^{{\prime}}’s for each of the four 3j symbols; compare (34.2.2) and (34.2.3).

Except in degenerate cases the combination of the triangle inequalities for the four 3j symbols in (34.4.1) is equivalent to the existence of a tetrahedron (possibly degenerate) with edges of lengths j_{1},j_{2},j_{3},l_{1},l_{2},l_{3}; see Figure 34.4.1.

See accompanying text
Figure 34.4.1: Tetrahedron corresponding to 6j symbol. Magnify

The 6j symbol can be expressed as the finite sum

34.4.2\begin{Bmatrix}j_{{1}}&j_{{2}}&j_{{3}}\\
l_{{1}}&l_{{2}}&l_{{3}}\end{Bmatrix}=\sum _{{s}}\frac{(-1)^{{s}}(s+1)!}{(s-j_{{1}}-j_{{2}}-j_{{3}})!(s-j_{{1}}-l_{{2}}-l_{{3}})!(s-l_{{1}}-j_{{2}}-l_{{3}})!(s-l_{{1}}-l_{{2}}-j_{{3}})!}\*\frac{1}{(j_{{1}}+j_{{2}}+l_{{1}}+l_{{2}}-s)!(j_{{2}}+j_{{3}}+l_{{2}}+l_{{3}}-s)!(j_{{3}}+j_{{1}}+l_{{3}}+l_{{1}}-s)!},

where the summation is over all nonnegative integers s such that the arguments in the factorials are nonnegative.

For alternative expressions for the 6j symbol, written either as a finite sum or as other terminating generalized hypergeometric series \mathop{{{}_{{4}}F_{{3}}}\/}\nolimits of unit argument, see Varshalovich et al. (1988, §§9.2.1, 9.2.3).