Index L
-
L’Hôpital’s rule for derivatives
§1.4(iii)
-
space
-
Lagrange interpolation
§3.3(i)—§3.3(ii)
-
Lagrange inversion theorem
§1.10(vii)
-
Lagrange’s formula for reversion of series
§2.2
-
Laguere EOP’s
§18.36(vi)
-
Laguerre functions
-
Laguerre polynomials §18.3, see also classical orthogonal polynomials.
-
addition theorem
§18.18(ii)
-
as Sheffer polynomials
§18.2(xii)
-
asymptotic approximations
§18.15(iv)—§18.15(iv)
-
computation
Ch.18
-
continued fraction
§18.13
-
derivatives
§18.9(iii)
-
differential equations
Table 18.8.1
-
Dirac delta
§1.17(iii)
-
expansions in series of §18.18(iii), §18.18(i), §18.18(ii)
-
explicit representations
§18.5—§18.5(iv)
-
Fourier transforms
§18.17(v)
-
generalized
§18.1(ii)
-
generating functions
§18.12
-
graphics Figure 18.4.5, Figure 18.4.5, Figure 18.4.5, Figure 18.4.6, Figure 18.4.6, Figure 18.4.6
-
Hille–Hardy formula
§18.18(vii)
-
inequalities §18.14(iii), §18.14(i), §18.14(ii)
-
integral representations §18.10(ii), §18.10(iv), Table 18.10.1
-
integrals §18.17(iv), §18.17(vi), §18.17(i)
-
interrelations with other orthogonal polynomials Figure 18.21.1, Figure 18.21.1, Figure 18.21.1, §18.21(ii), §18.21(ii), §18.7(iii), §18.7(iii)
-
Laplace transform
§18.17(vi)
-
leading coefficients
Table 18.3.1
-
limiting form as a Bessel function
§18.11(ii)
-
limits to monomials
§18.6(ii)
-
local maxima and minima
§18.14(iii)
-
Mellin transform
§18.17(vii)
-
monic
§3.5(v)
-
multiplication theorem
§18.18(iii)
-
notation
§18.1(ii)
-
orthogonality properties
Table 18.3.1
-
parameter constraint Table 18.3.1, §18.5(iii)
-
Poisson kernels
§18.18(vii)
-
recurrence relations Table 18.9.1, Table 18.9.2
-
relation to confluent hypergeometric functions §13.18(v), §13.6(v), §18.11(i), §18.5(iii)
-
Rodrigues formula
Table 18.5.1
-
standardization
Table 18.3.1
-
tables
§18.41(i)
-
tables of zeros Table 3.5.7, Table 3.5.8, Table 3.5.9
-
upper bounds
§18.14(i)
-
value at
§18.6(i)
-
weight function
Table 18.3.1
-
zeros §18.16(iv), §18.2(vi)
-
Lah numbers
-
Lambert series
-
Lambert -function
§4.13
-
Lamé functions
Ch.29
-
Lamé polynomials
Ch.29
-
Lamé wave equation
§29.11
-
Lamé–Wangerin functions
§29.17(iii)
-
Lamé’s equation
§29.2(i)
-
Lanczos tridiagonalization of a symmetric matrix
§3.2(vi)
-
Lanczos vectors
§3.2(vi)
-
Landen transformations
-
Laplace equation
-
Laplace transform
-
Laplace’s equation
-
Laplace’s method for asymptotic expansions of integrals §2.3(iii), §2.4(iii)
-
Laplacian
§1.5(ii)
-
lattice
-
lattice models of critical phenomena
-
lattice parameter
-
lattice paths
§26.2—§26.6(iv)
-
lattice walks
-
Laurent polynomial
-
Laurent series
§1.10(iii)
-
asymptotic approximations for coefficients
§2.10(iv)
-
Lauricella’s function
-
Lax pairs
-
layered materials
-
least squares approximations §3.11(v), §3.11(v)—§3.11(v)
-
-
Lebesgue constants §1.8(i), §3.11(ii)
-
Lebesgue–Stieltjes measure
§18.2(i)
-
Legendre functions §14.1, see also associated Legendre functions and Ferrers functions.
-
Legendre functions on the cut, see Ferrers functions.
-
Legendre polynomials §18.3, see also classical orthogonal polynomials.
-
addition theorem
§18.18(ii)
-
asymptotic approximations
§18.15(iii)
-
computation
Ch.18
-
continued fraction
§18.13
-
definition
Table 18.3.1
-
differential equation
Table 18.8.1
-
Dirac delta
§1.17(iii)
-
expansions in series of §18.18(viii), §18.18(i)
-
explicit representations
§18.5—§18.5(iv)
-
Fourier transforms
§18.17(v)
-
generating functions
§18.12
-
graphs Figure 18.4.4, Figure 18.4.4, Figure 18.4.4
-
inequalities
§18.14(ii)
-
integral representations §18.10(i), Table 18.10.1
-
integrals §18.17(viii), §18.17(iii)
-
interrelations with other orthogonal polynomials
§18.7(i)
-
large degree
§2.10(iv)
-
leading coefficients
Table 18.3.1
-
Mellin transforms
§18.17(vii)
-
monic
§3.5(v)
-
notation
§18.1(ii)
-
orthogonality properties
Table 18.3.1
-
recurrence relations Table 18.9.1, Table 18.9.2
-
relations to other functions
-
Rodrigues formula
Table 18.5.1
-
shifted §18.1(ii), Table 18.3.1
-
special values
Table 18.6.1
-
standardization
Table 18.3.1
-
symmetry
Table 18.6.1
-
tables
§18.41(i)
-
tables of zeros Table 3.5.3, Table 3.5.4, Table 3.5.5
-
weight function
Table 18.3.1
-
zeros §18.16(iii), §18.2(vi)
-
Legendre symbol
-
Legendre’s elliptic integrals
§19.2(ii)
-
Legendre’s equation
§14.2(i)
-
Legendre’s relation
-
Legendre’s relation for the hypergeometric function
-
Leibniz’s formula for derivatives
§1.4(iii)
-
lemniscate arc length
§22.18(i)
-
lemniscate constants §19.20(i), §19.20(iv)
-
lengths of plane curves
-
Lerch’s transcendent
-
level-index arithmetic
§3.1(iv)
-
Levi-Civita symbol for vectors
§1.6(ii)
-
Levin’s transformations
-
Lie algebras
-
light absorption
-
limit circle
-
second order linear differential operator
§1.18(ix)
-
limit point
-
second order linear differential operator
§1.18(ix)
-
limit point and limit circle boundary conditions
-
limit points (or limiting points)
§1.9(ii)
-
limits of functions
-
line broadening function
§7.19(i)
-
linear algebra §3.2—§3.2(vii), see also Gaussian elimination.
-
linear functional
§1.16(i)
-
linear operators
-
linear second order differential operator
-
linear transformation
§1.9(iv)
-
Liouville normal form
-
Liouville transformation for differential equations §1.13(iv), §2.8(i)
-
Liouville–Green (or WKBJ) approximation
§2.7(iii)—§2.7(iii)
-
Liouville’s function
-
Liouville’s theorem for entire functions
§1.9(iii)
-
little -Jacobi polynomials
§18.27(iv)
-
local maxima and minima
§18.14(iii)
-
locally analytic
§32.2(i)
-
locally integrable
§2.5(i)
-
logarithm function
Ch.4
-
logarithmic integral
§6.2(i)
-
Lommel functions
§11.9
-
Lucas numbers
§24.15(iv)