19.6.1 | ||||
ⓘ
|
19.6.2 | ||||
, | ||||
. | ||||
ⓘ
|
19.6.3 | |||
. | |||
ⓘ
|
19.6.4 | ||||
, | ||||
. | ||||
ⓘ
|
If , then the Cauchy principal value satisfies
19.6.5 | |||
ⓘ
|
and
19.6.6 | ||||
, | ||||
. | ||||
ⓘ
|
19.6.7 | ||||
ⓘ
|
19.6.8 | |||
ⓘ
|
For the inverse Gudermannian function see §4.23(viii). Compare also (19.10.2).
19.6.9 | ||||
ⓘ
|
19.6.10 | |||
ⓘ
|
Circular and hyperbolic cases, including Cauchy principal values, are unified by using . Let and . Then
19.6.11 | ||||
ⓘ
|
19.6.12 | ||||
ⓘ
|
19.6.13 | ||||
ⓘ
|
19.6.14 | ||||
ⓘ
|
For the Cauchy principal value of when , see §19.7(iii).
19.6.15 | ||||
or , , | ||||
, | ||||
. | ||||
ⓘ
|