Index J
-
J-Matrix Theory of Scattering
§18.39(iv)
-
Jacobi fraction (-fraction)
§3.10(ii)
-
Jacobi function
-
Jacobi matrix
§18.2(iv)
-
Jacobi polynomials §18.3, see also classical orthogonal polynomials.
-
applications
-
Askey–Gasper inequality
§18.38(ii)
-
associated
§18.30(i)
-
asymptotic approximations
§18.15(i)—§18.15(i)
-
Bateman-type sums
§18.18(vi)
-
computation
Ch.18
-
definition
Table 18.3.1
-
derivatives
§18.9(iii)
-
differential equations
Table 18.8.1
-
expansions in series of
§18.18—§18.18(vi)
-
Fourier transform
§18.17(v)
-
generating functions
§18.12
-
graphs Figure 18.4.1, Figure 18.4.1, Figure 18.4.1, Figure 18.4.2, Figure 18.4.2, Figure 18.4.2
-
inequalities §18.14(i), §18.14(iii), §18.14(ii), §18.14(iii)
-
integral representations §18.10(ii), Table 18.10.1
-
integrals §18.17(ix), §18.17(i), §18.17(vi), §18.17(iv)
-
interrelations with other orthogonal polynomials Figure 18.21.1, Figure 18.21.1, Figure 18.21.1, §18.21(ii), §18.7—§18.7(iii)
-
Laplace transform
§18.17(vi)
-
leading coefficients
Table 18.3.1
-
limiting form
-
limits to monomials
§18.6(ii)
-
local maxima and minima §18.14(iii), §18.14(iii)—§18.14(iii)
-
Mellin transform
§18.17(vii)
-
monic
§3.5(v)
-
notation
§18.1(ii)
-
orthogonality properties
Table 18.3.1
-
parameter constraint Table 18.3.1, §18.5(iii)
-
recurrence relations §18.9(i), §18.9(i)
-
relations to other functions
-
Rodrigues formula
Table 18.5.1
-
shifted
§18.1(iii)
-
special values
Table 18.6.1
-
standardization
Table 18.3.1
-
symmetry
Table 18.6.1
-
tables of coefficients
§18.3
-
upper bounds
§18.14(i)
-
weight function
Table 18.3.1
-
zeros §18.16(ii), §18.2(vi)
-
Jacobi symbol
-
Jacobi transform §14.31(ii), §15.9(ii)
-
Jacobi-type polynomials
§18.36(i)
-
Jacobi–Abel addition theorem
-
Jacobi–Anger expansions §10.12, §10.35
-
Jacobi’s amplitude function, see amplitude () function.
-
Jacobi’s epsilon function
§22.16(ii)
-
Jacobi’s identities
-
Jacobi’s imaginary transformation
§22.6(iv)
-
Jacobi’s inversion problem for elliptic functions
§20.9(ii)
-
Jacobi’s nome
-
power-series expansion
§19.5
-
Jacobi’s theta functions, see theta functions.
-
Jacobi’s triple product
§20.4(i)
-
Jacobi’s zeta function
§22.16(iii)
-
Jacobian
§1.5(vi)
-
Jacobian elliptic functions
§22.2
-
addition theorems
§22.8—§22.8(iii)
-
analytic properties §22.17(ii), §22.2
-
applications
-
change of modulus
§22.17
-
computation
§22.20—§22.20(vii)
-
congruent points
§22.4(i)
-
coperiodic
§22.4(i)
-
copolar
§22.4(i)
-
cyclic identities
-
definitions
§22.2
-
derivatives
§22.13(i)
-
differential equations
-
double argument
§22.6(ii)
-
Eisenstein series
§22.12—§22.12
-
elementary identities
§22.6—§22.6(v)
-
equianharmonic case
§22.5(ii)
-
expansions in doubly-infinite partial fractions
§22.12—§22.12
-
Fourier series
§22.11
-
fundamental unit cell
§22.4(ii)
-
Glaisher’s notation §22.1, §22.4(ii)
-
graphical interpretation via Glaisher’s notation
§22.4(ii)
-
graphics
-
half argument
§22.6(iii)
-
hyperbolic series for squares
§22.11—§22.11
-
integrals
-
interrelations
§19.25(v)
-
inverse, see inverse Jacobian elliptic functions.
-
Jacobi’s imaginary transformation
§22.6(iv)
-
Landen transformations
-
lattice
§22.4(ii)
-
lemniscatic case
§22.5(ii)
-
limiting forms as or
§22.5(ii)—§22.5(ii)
-
Maclaurin series
-
modulus
§22.2
-
change of
§22.17—§22.17(ii)
-
complex §22.17(ii), Figure 22.3.24, Figure 22.3.24, Figure 22.3.24, Figure 22.3.25, Figure 22.3.25, Figure 22.3.25, Figure 22.3.26, Figure 22.3.26, Figure 22.3.26, Figure 22.3.27, Figure 22.3.27, Figure 22.3.27, Figure 22.3.28, Figure 22.3.28, Figure 22.3.28, Figure 22.3.29, Figure 22.3.29, Figure 22.3.29
-
limiting values
§22.5(ii)
-
outside the interval
§22.17—§22.17(ii)
-
purely imaginary
§22.17(i)
-
real
§22.17(i)
-
nome
§22.2
-
notation
§22.1
-
periods §22.2, §22.4(i)—§22.4(i)
-
poles
§22.4(i)—§22.4(i)
-
poristic polygon constructions
§22.8(iii)
-
principal
§22.1
-
relations to other functions
-
rotation of argument
§22.6(iv)
-
special values of the variable §22.5—§22.5(i), §22.8(iii)
-
subsidiary
§22.1
-
sums of squares
§22.6(i)
-
tables
§22.21
-
translation of variable
§22.4(iii)
-
trigonometric series expansions
§22.11—§22.12
-
zeros
§22.4(i)—§22.4(i)
-
Jensen’s inequality for integrals
§1.7(iv)
-
Jonquière’s function, see polylogarithms.
-
Jordan curve theorem
§1.9(iii)
-
Jordan’s function
-
Jordan’s inequality
-
Julia sets
§3.8(viii)