Index C
-
calculus
-
calculus of finite differences
§24.17(i)
-
canonical integrals
§36.2(i)
-
cardinal function
§3.3(vi)
-
cardinal monosplines
§24.17(ii)—§24.17(ii)
-
cardinal spline functions
§24.17(ii)
-
Carmichael numbers
-
Casimir forces
-
Casimir operator
§18.38(iii)
-
Casimir–Polder effect
-
Catalan numbers
-
Catalan’s constant
-
Cauchy determinant
§1.3(ii)
-
Cauchy principal values
-
Cauchy–Riemann equations
§1.9(ii)
-
Cauchy–Schwarz inequalities for sums and integrals §1.7(i), §1.7(ii)
-
Cauchy’s integral formula
§1.9(iii)
-
Cauchy’s theorem
§1.9(iii)
-
caustics
-
Cayley’s identity for Schwarzian derivatives
§1.13(iv)
-
central differences in imaginary direction
§18.1(i)
-
Cesàro means
§1.15(iii)
-
Cesàro summability §1.15(iv), §1.15(i)
-
chain rule
-
characteristic equation
-
characteristics
-
characters
-
Charlier polynomials, see Hahn class orthogonal polynomials.
-
Chebyshev polynomials §18.3, see also Chebyshev-series expansions and classical orthogonal polynomials.
-
applications
-
computation
Ch.18
-
continued fractions
§18.13
-
definition
Table 18.3.1
-
derivatives
§18.9(iii)
-
differential equations
Table 18.8.1
-
dilated
§18.1(iii)
-
expansions in series of §18.18(i), §18.18(viii), §3.11(ii)
-
explicit representations
§18.5(i)—§18.5(iv)
-
generating functions
§18.12
-
graphs Figure 18.4.3, Figure 18.4.3, Figure 18.4.3
-
inequalities
§18.14(i)
-
integral representations
Table 18.10.1
-
integrals
§18.17(viii)
-
interrelations with other classical orthogonal polynomials
§18.7—§18.7(iii)
-
leading coefficients
Table 18.3.1
-
linearization formula
§18.18(v)
-
local maxima and minima
§18.14(iii)
-
monic
§18.38(i)
-
notation
§18.1(ii)
-
of the first, second, third, and fourth kinds
Table 18.3.1
-
orthogonality properties
-
recurrence relations Table 18.9.1, Table 18.9.2, §3.11(ii)
-
relations to other functions
-
Rodrigues formula
Table 18.5.1
-
shifted §18.1(iii), Table 18.3.1
-
special values
Table 18.6.1
-
standardization
Table 18.3.1
-
symmetry
Table 18.6.1
-
tables
§18.41(i)
-
upper bounds
§18.14(iii)
-
weight functions
Table 18.3.1
-
zeros §18.16(iii), §18.2(vi), §18.3, §3.5(v)—§3.5(v)
-
Chebyshev -function
§25.16(i)
-
Chebyshev-series expansions
-
chemical reactions
-
chi-square distribution function
-
incomplete gamma functions
§8.23
-
Chinese remainder theorem
-
Christoffel coefficients (or numbers), see Gauss quadrature, Christoffel coefficients (or numbers)
-
Christoffel–Darboux formula
§18.2(v)
-
Chu–Vandermonde identity
-
circular trigonometric functions, see trigonometric functions.
-
classical dynamics
-
Jacobian elliptic functions
§22.19(v)
-
Weierstrass elliptic functions
§23.21
-
classical orthogonal polynomials
Ch.18
-
classical theta functions, see theta functions.
-
Clausen’s integral
§25.12(i)
-
Clebsch–Gordan coefficients, see symbols.
-
relation to generalized hypergeometric functions
§16.24(iii)
-
Clenshaw–Curtis quadrature formula §3.5(iv), §3.5(vii)
-
comparison with Gauss quadrature
§3.5(iv)
-
Clenshaw’s algorithm
-
closed point set §1.6(iv), §1.9(ii)
-
closure
-
coalescing saddle points
§36.12(i)—§36.12(iii)
-
coaxial circles
-
symmetric elliptic integrals
§19.34
-
coding theory
-
cofactor, see determinants.
-
coherent states
-
cols, see saddle points.
-
combinatorial design
§26.19
-
combinatorics
§26.1
-
compact set
§1.9(vii)
-
complementary error function, see error functions.
-
complementary exponential integral, see exponential integrals.
-
completely multiplicative functions
§27.3
-
completeness relation
-
completness relation
-
complex numbers
-
complex physical systems
-
incomplete gamma functions
§8.23
-
complex tori
-
computer arithmetic
-
generalized exponentials and logarithms
§4.44
-
computer-aided design
-
conductor
-
confluent Heun equation
§31.12
-
confluent hypergeometric functions, see also Kummer functions and Whittaker functions.
-
of matrix argument
§35.6
-
relations to other functions
-
conformal mapping
§1.9(iv)—§1.9(iv)
-
congruence of rational numbers
§24.10(i)
-
conical functions
§14.20(i)
-
connected point set
§1.9(ii)
-
constants
-
contiguous relations
§18.2(v)
-
continued fractions §1.12—§1.12(vi), §18.13, §18.2(x)
-
continuous dual Hahn polynomials, see Wilson class orthogonal polynomials.
-
continuous dynamical systems and mappings
-
continuous function
-
continuous Hahn polynomials, see Hahn class orthogonal polynomials.
-
continuous -Hermite polynomials §18.28(vi), §18.28(vii)
-
asymptotic approximations to zeros
§18.29
-
continuous -ultraspherical polynomials
§18.28(v)
-
continuous spectra
-
contour
§1.9(iii)
-
convergence
-
convex functions
§1.4(viii)
-
coordinate systems
-
corecursive orthogonal polynomials §18.2(x), §18.30(vi), §18.30(vii)
-
Cornu’s spiral
§7.20(ii)
-
cosecant function, see trigonometric functions.
-
cosine function, see trigonometric functions.
-
cosine integrals
§6.2(ii)
-
cosine transform
-
Cosines
-
cosmology
-
cotangent function, see trigonometric functions.
-
Coulomb excitation of nuclei
§33.22(ii)
-
Coulomb field
§33.22(iv)
-
Coulomb functions
-
Coulomb functions: variables
Ch.33
-
analytic properties §33.14(i), §33.14(ii), §33.14(iii)
-
applications
Ch.33—§33.22(vii)
-
asymptotic approximations and expansions for large §33.21(i), §33.21(ii)
-
asymptotic expansions as
§33.20(iii)
-
case
§33.20(i)
-
complex variables and parameters
§33.22(vii)
-
computation
§33.23
-
conversions between variables and parameters
§33.22(iii)
-
definitions §33.14(ii), §33.14(iii), §33.14(iv)
-
derivatives
§33.17
-
expansions in Airy functions
§33.20(iv)
-
expansions in Bessel functions §33.20(i), §33.20(iii), §33.20(iv)
-
expansions in modified Bessel functions §33.20(i), §33.20(iii)
-
functions §33.14(ii), §33.14(iii)
-
functions
§33.14(iv)
-
graphics
§33.15—§33.15(ii)
-
integral representations for Dirac delta
§33.14(iv)
-
limiting forms for large
§33.18
-
power-series expansions in
§33.19
-
power-series expansions in
§33.20(ii)
-
recurrence relations
§33.17
-
relations to other functions
-
scaling of variables and parameters §33.22(ii), §33.22(ii), §33.22(ii)
-
tables
§33.24
-
Wronskians
§33.14(v)
-
Coulomb functions: variables
Ch.33
-
analytic properties §33.2(i), §33.2(ii), §33.2(iii)
-
applications
Ch.33—§33.22(vii)
-
asymptotic expansions
-
case
§33.5(ii)
-
complex variable and parameters §33.13, §33.22(vii)
-
computation
§33.23
-
continued fractions
§33.8
-
conversions between variables and parameters
§33.22(iii)
-
cross-product
§33.2(iv)
-
definitions §33.2(ii), §33.2(iii)
-
derivatives
§33.4
-
expansions in Airy functions
§33.12(i)
-
expansions in Bessel functions
§33.9(ii)
-
expansions in modified Bessel functions
§33.9(ii)
-
expansions in spherical Bessel functions
§33.9(i)
-
functions §33.2(ii), §33.2(iii)
-
graphics
§33.3—§33.3(ii)
-
integral representations
§33.7
-
limiting forms
-
normalizing constant
§33.2(ii)
-
phase shift (or phase) §33.2(iii), §33.25
-
power-series expansions in
§33.6
-
recurrence relations
§33.4
-
relations to other functions
-
scaling of variables and parameters §33.22(ii), §33.22(ii), §33.22(ii)
-
tables
§33.24
-
transition region
§33.12(i)
-
WKBJ approximations
§33.23(vii)
-
Wronskians
§33.2(iv)
-
Coulomb phase shift §33.2(iii), §33.23, §33.25, §5.20
-
Coulomb potential barriers
§33.22(vi)
-
Coulomb potentials
Ch.33—§33.22(ii)
-
-hypergeometric function
§17.17
-
Coulomb Problem in 3D
§18.39(ii)
-
Coulomb radial functions, see Coulomb functions: variables .
-
Coulomb spheroidal functions
§30.12
-
as confluent Heun functions
§31.12
-
Coulomb wave equation
-
Coulomb wave functions, see Coulomb functions: variables and Coulomb functions: variables .
-
Coulomb–Pollaczek polynomials
-
counting techniques
§26.18
-
critical phenomena
-
critical points
§36.4(i)
-
cross ratio
§1.9(iv)
-
cryptography
§27.16
-
cubature
-
cubic equation
§1.11(iii)
-
cubic equations
-
solutions as trigonometric and hyperbolic functions
§4.43
-
curve
-
cusp bifurcation set
-
cusp canonical integral §36.2(i), §36.7(ii)
-
cusp catastophe §36.2(i), Figure 36.5.1, Figure 36.5.1
-
cuspoids
-
cut
§1.10(vi)
-
cycle
§26.2
-
cyclic identities
-
cyclotomic fields
-
cylinder functions
-
cylindrical coordinates
§1.5(ii)
-
cylindrical polar coordinates, see cylindrical coordinates.