DLMF
Index
Notations
Search
Help?
Citing
Customize
About the Project
Index
Index W
Notations
Index Z
♦
A
♦
B
♦
C
♦
D
♦
E
♦
F
♦
G
♦
H
♦
I
♦
J
♦
K
♦
L
♦
M
♦
N
♦
O
♦
P
♦
Q
♦
R
♦
S
♦
T
♦
U
♦
V
♦
W
♦Z♦
zero potential
Coulomb functions
§33.22(ii)
,
§33.22(ii)
,
§33.22(ii)
zeros
of orthogonal polynomials
§18.2(vi)
zeros of analytic functions
computation
§3.8
—
§3.8(vi)
conditioning
§3.8(vi)
multiplicity
§1.10(i)
,
§3.8
simple
§3.8
zeros of Bessel functions (including derivatives)
analytic properties
§10.21(ii)
—
§10.21(ii)
approximations
§10.76(ii)
asymptotic expansions for large order
uniform
§10.21(viii)
asymptotic expansions for large zeros
§10.21(vi)
error bounds
§10.21(vi)
bounds
§10.21(v)
common
§10.21(i)
complex
§10.21(i)
,
§10.21(ix)
—
§10.21(ix)
computation
§10.74(vi)
,
§10.74(vi)
—
§10.74(vi)
distribution
§10.21(i)
,
§10.21(ix)
—
§10.21(xiii)
double
§10.21(i)
interlacing
§10.21(i)
monotonicity
§10.21(iv)
notation
§10.21(i)
of cross-products
§10.21(x)
asymptotic expansions
§10.21(x)
purely imaginary
§10.21(i)
,
§10.21(v)
relation to inverse phase functions
§10.21(ii)
tables
§10.75(iii)
,
§4.46
with respect to order (
ν
-zeros)
§10.21(xiv)
zeros of cylinder functions (including derivatives)
§10.21(i)
—
§10.21(vii)
analytic properties
§10.21(ii)
asymptotic expansions for large order
uniform
§10.21(vii)
asymptotic expansions for large zeros
§10.21(vi)
forward differences
§10.21(ii)
interlacing
§10.21(i)
monotonicity
§10.21(iv)
relation to inverse phase functions
§10.21(ii)
zeros of polynomials
,
see also
stable polynomials
.
computation
§3.8(iv)
—
§3.8(iv)
conditioning
§3.8(vi)
degrees two, three, four
§1.11(iii)
Descartes’ rule of signs
§1.11(ii)
discriminant
§1.11(ii)
distribution
§1.11(ii)
—
§1.11(ii)
division algorithm
§1.11(i)
elementary properties
§1.11(ii)
elementary symmetric functions
§1.11(ii)
explicit formulas
§3.8(iv)
Horner’s scheme
§1.11(i)
extended
§1.11(i)
resolvent cubic
§1.11(iii)
roots of constants
§1.11(iv)
roots of unity
§1.11(iv)
zeta function
,
see
Hurwitz zeta function
,
Jacobi’s zeta function
,
periodic zeta function
,
Riemann zeta function
,
and
Weierstrass zeta function
.
Zhedanov algebra
§18.38(iii)
zonal polynomials
§35.4
applications
§35.9
beta integral
§35.4(ii)
definition
§35.4(i)
Laplace integral
§35.4(ii)
mean-value
§35.4(ii)
normalization
§35.4(ii)
notation
§35.4(i)
orthogonality
§35.4(ii)
summation
§35.4(ii)
tables
§35.11
zonal spherical harmonics
ultraspherical polynomials
§18.38(ii)