Index E
-
ecological systems
-
eigenfunction expansion
-
eigenfunction expansions
-
eigenfunctions
-
eigenvalue
-
Einstein functions
§4.44
-
Einstein summation convention for vectors
§1.6(ii)—§1.6(ii)
-
Eisenstein convention
§23.8(ii)
-
Eisenstein series
-
electric particle field
-
electromagnetic scattering
-
Bessel functions and spherical Bessel functions
§10.73(i)
-
electromagnetic theory
-
sine and cosine integrals
§6.17
-
electromagnetic waves
-
electron-ion collisions
-
electronic structure of heavy elements
-
electrostatics
-
elementary functions, see exponential function, hyperbolic functions, inverse hyperbolic functions, inverse trigonometric functions, Lambert -function, logarithm function, power function, and trigonometric functions.
-
elementary particle physics
-
ellipse
-
ellipse arc length
-
ellipsoid
-
ellipsoidal coordinates
§29.18(ii)
-
ellipsoidal harmonics
-
ellipsoidal wave equation, see Lamé wave equation.
-
elliptic coordinates
§31.17(i)
-
elliptic crack and punch problems
-
elliptic curves
§22.18(iv)
-
elliptic functions, see also Jacobian elliptic functions and Weierstrass elliptic functions.
-
elliptic integrals, see basic elliptic integrals, Bulirsch’s elliptic integrals, general elliptic integrals, generalizations of elliptic integrals, Legendre’s elliptic integrals, and symmetric elliptic integrals.
-
complete
-
relations to other functions
-
elliptic modular function, see modular functions.
-
elliptic umbilic bifurcation set
-
elliptic umbilic canonical integral
§36.2(i)
-
asymptotic approximations
§36.11—§36.12(iii)
-
convergent series
§36.8
-
differential equations
§36.10(iii)
-
formulas for Stokes set
§36.5(iii)
-
integral identity
(36.9.9)
-
picture of Stokes set Figure 36.5.8, Figure 36.5.8, Figure 36.5.8
-
pictures of modulus Figure 36.3.6, Figure 36.3.6, Figure 36.3.6, Figure 36.3.7, Figure 36.3.7, Figure 36.3.7, Figure 36.3.8, Figure 36.3.8, Figure 36.3.8
-
pictures of phase Figure 36.3.15, Figure 36.3.15, Figure 36.3.16, Figure 36.3.16, Figure 36.3.17, Figure 36.3.17
-
scaling laws
§36.6
-
zeros
§36.7(iii)
-
elliptic umbilic catastrophe §36.2(i), Figure 36.5.5, Figure 36.5.5
-
elliptical coordinates
-
entire functions
§1.9(ii)
-
enumerative topology
-
EOP’s (exceptional orthogonal polynomials)
§18.36(vi)
-
epsilon function, see Jacobi’s epsilon function.
-
equation of Ince, see Hill’s equation, equation of Ince.
-
equiconvergence theorem
§18.2(xi)
-
equiconvergent
§30.4(iv)
-
Erlang loss function
-
incomplete gamma functions
§8.23
-
error-control function
-
error functions
§7.2(i)
-
applications
-
approximations §7.24(i), 1st item, 2nd item, 3rd item, §7.24(ii)
-
asymptotic expansions
§7.12(i)
-
computation
§3.5(ix)—§7.22(i)
-
continued fractions
§7.9
-
definitions
§7.2(i)
-
derivatives
§7.10
-
expansions in spherical Bessel functions
§7.6(ii)
-
generalized
§7.16
-
graphics Figure 7.3.1, Figure 7.3.1, Figure 7.3.1, Figure 7.3.5, Figure 7.3.5, Figure 7.3.5, Figure 7.3.6, Figure 7.3.6, Figure 7.3.6
-
inequalities
§7.8
-
integral representations
§7.7(i)—§7.7(i)
-
integrals
-
interrelations
§7.5
-
inverse functions
§7.17(i)
-
notation
§7.1
-
power-series expansions
§7.6(i)
-
relations to other functions
-
repeated integrals of, see repeated integrals of the complementary error function.
-
sums
§7.15
-
tables 3rd item, 1st item, §7.23(ii), §7.23(iii)
-
values at infinity
§7.2(i)
-
zeros
§7.13(i)—§7.13(ii)
-
error measures
-
error term
§2.3(i)
-
essential singularity §1.10(iii), see also isolated essential singularity.
-
essentially self-adjoint operator
-
eta function, see Dedekind’s eta function.
-
Euler numbers
§24.1
-
Euler polynomials
§24.1
-
Euler product
-
Euler splines
§24.17(ii)
-
Euler sums
-
Euler–Fermat theorem
-
Euler–Maclaurin formula
§2.10(i)
-
Euler–Poisson differential equations
§19.18(ii)
-
Euler–Poisson–Darboux equation
-
Euler–Tricomi equation
-
Euler’s beta integral
§5.12
-
Euler’s constant
§5.2(ii)
-
Euler’s homogeneity relation
-
Euler’s integral
-
Euler’s pentagonal number theorem
-
Euler’s totient
-
Euler’s transformation
-
Eulerian numbers
-
evolution equations
-
exact rational arithmetic
§3.1(iii)
-
expansion of arbitrary function
-
expansion of arbitrary vector
-
exponential function
§4.2(iii)
-
exponential growth
§1.14(iii)
-
exponential integrals
§6.2(i)
-
analytic continuation
§6.4
-
applications
§6.17
-
approximations 1st item, 2nd item, 3rd item
-
asymptotic expansions
§6.12(i)
-
Chebyshev-series expansions 1st item, 2nd item, 3rd item, 4th item, 5th item
-
computation
§6.18
-
continued fraction
§6.9
-
definition
§6.2(i)
-
expansion in inverse factorials
§6.10(i)
-
expansions in modified spherical Bessel functions
§6.10(ii)
-
generalized
§8.19
-
graphics Figure 6.3.1, Figure 6.3.1, Figure 6.3.3, Figure 6.3.3, Figure 6.3.3
-
inequalities
§6.8
-
integral representations
§6.7—§6.7(i)
-
integrals §6.14(i), §6.14(ii)
-
interrelations §6.2(i), §6.5
-
Laplace transform
§6.14(i)
-
notation
§6.1
-
power series
§6.6
-
principal value
§6.2(i)
-
relations to other functions
-
confluent hypergeometric functions
§6.11
-
incomplete gamma function
§6.11
-
logarithmic integral
§6.2(i)
-
sine and cosine integrals
§6.5
-
small argument
§2.5(iii)
-
tables 1st item, 2nd item, 1st item, 2nd item
-
zeros
§6.13
-
exponential of the trace
-
extended complex plane
§1.9(iv)