DLMF
Index
Notations
Search
Help?
Citing
Customize
About the Project
Index
Index V
Index Z
Index W
♦
A
♦
B
♦
C
♦
D
♦
E
♦
F
♦
G
♦
H
♦
I
♦
J
♦
K
♦
L
♦
M
♦
N
♦
O
♦
P
♦
Q
♦
R
♦
S
♦
T
♦
U
♦
V
♦W♦
Z
♦
Waring’s problem
number theory
§27.13(iii)
water waves
Kelvin’s ship-wave pattern
§36.13
—
§36.13
Riemann theta functions
§21.9
,
§21.9
—
§21.9
Struve functions
§11.12
Watson integrals
Appell functions
§16.24(i)
generalized hypergeometric functions
§16.24(i)
Watson’s
F
2
3
sum
Andrews’ terminating
q
-analog
§17.7(iii)
Gasper–Rahman
q
-analog
§17.7(iii)
Watson’s expansions
theta functions
§20.8
Watson’s identities
theta functions
§20.7(v)
Watson’s lemma
asymptotic expansions of integrals
§2.3(ii)
,
§2.4(i)
Watson’s sum
generalized hypergeometric functions
§16.4(ii)
wave acoustics
generalized exponential integral
§8.24(iii)
wave equation
,
see also
water waves
.
Bessel functions and modified Bessel functions
§10.73(i)
confluent hypergeometric functions
§13.28(i)
ellipsoidal coordinates
§29.18(ii)
Mathieu functions
1st item
,
§28.33(ii)
oblate spheroidal coordinates
§30.14(i)
—
§30.14(v)
paraboloidal coordinates
§13.28(i)
prolate spheroidal coordinates
§30.13
—
§30.13(v)
separation constants
§29.18(i)
spherical Bessel functions
§10.73(ii)
sphero-conal coordinates
§29.18(i)
symmetric elliptic integrals
§19.18(ii)
wave functions
paraboloidal
§28.31(iii)
potential
§15.19(i)
waveguides
§10.73(i)
Weber function
,
see
Anger–Weber functions
.
Weber parabolic cylinder functions
,
see
parabolic cylinder functions
.
Weber transform
Bessel functions
§10.22(v)
Weber–Schafheitlin discontinuous integrals
Bessel functions
§10.22(iv)
Weber’s function
,
see
Bessel functions of the second kind
.
Weierstrass elliptic functions
§23.2(ii)
addition theorems
§23.10(i)
analytic properties
§23.2(ii)
applications
mathematical
§23.20
physical
§23.21
—
§23.21(iv)
asymptotic approximations
§23.12
computation
§23.22
definitions
§23.2(ii)
derivatives
§23.3(ii)
differential equations
§23.3(ii)
discriminant
§23.3(i)
duplication formulas
§23.10(ii)
equianharmonic case
§23.4(i)
—
§23.4(i)
,
§23.5(v)
Fourier series
§23.8(i)
graphics
complex variables
§23.4(ii)
—
§23.4(ii)
real variables
§23.4(i)
—
§23.4(i)
homogeneity
§23.10(iv)
infinite products
§23.8(iii)
integral representations
§23.11
integrals
§23.14
lattice
§23.2(i)
computation
§23.22(ii)
equianharmonic
§23.5(v)
generators
§23.2(i)
invariants
§23.3(i)
lemniscatic
§23.4(i)
—
§23.4(i)
,
§23.5(iii)
notation
§23.1
points
§23.2(i)
pseudo-lemniscatic
§23.5(iv)
rectangular
§23.5(ii)
rhombic
§23.5(iv)
—
§23.5(iv)
roots
§23.3(i)
Laurent series
§23.9
lemniscatic case
§23.4(i)
—
§23.4(i)
,
§23.5(iii)
n
-tuple formulas
§23.10(iii)
notation
§23.1
periodicity
§23.2(iii)
poles
§23.2(ii)
power series
§23.9
principal value
§23.8(ii)
pseudo-lemniscatic case
§23.5(iv)
quarter periods
§23.7
quasi-periodicity
§23.2(iii)
relations to other functions
elliptic integrals
§23.6(iv)
—
§23.6(iv)
general elliptic functions
§23.6(iii)
Jacobian elliptic functions
§23.6(ii)
symmetric elliptic integrals
§19.25(vi)
theta functions
§23.6(i)
rhombic case
§23.5(iv)
—
§23.5(iv)
series of cosecants or cotangents
§23.8(ii)
tables
§23.23
zeros
§23.13
,
§23.2(ii)
Weierstrass
M
-test
,
see
M
-test for uniform convergence
.
Weierstrass
℘
-function
,
see
Weierstrass elliptic functions
.
Weierstrass product
§1.10(ix)
Weierstrass sigma function
,
see
Weierstrass elliptic functions
.
Weierstrass zeta function
,
see
Weierstrass elliptic functions
.
weight functions
cubature
§3.5(x)
—
§3.5(x)
definition
§18.2(i)
,
§3.5(iv)
Freud
§18.32
least squares approximations
§3.11(v)
logarithmic
§3.5(v)
—
§3.5(v)
minimax rational approximations
§3.11(iii)
quadrature
§3.5(iv)
—
§3.5(v)
weighted means
§1.2(iv)
Weniger’s transformation
for sequences
§3.9(v)
Whipple’s
F
2
3
sum
Gasper–Rahman
q
-analog
§17.7(iii)
Whipple’s formula
associated Legendre functions
§14.9(iv)
toroidal functions
§14.19(v)
Whipple’s sum
generalized hypergeometric functions
§16.4(ii)
Whipple’s theorem
Watson’s
q
-analog
§17.9(iii)
Whipple’s transformation
generalized hypergeometric functions
§16.4(iii)
Whittaker functions
Ch.13
,
see also
confluent hypergeometric functions
.
addition theorems
§13.26(i)
,
§13.26(ii)
analytic continuation
§13.14(ii)
analytical properties
§13.14(i)
applications
Coulomb functions
§13.28(ii)
groups of triangular matrices
§13.27
—
§13.27
physical
§13.28(ii)
,
§33.22(v)
uniform asymptotic solutions of differential equations
§13.27
asymptotic approximations for large parameters
imaginary
κ
and/or
μ
§13.20(iv)
large
κ
§13.21
—
§13.21(iv)
large
μ
§13.20(i)
—
§13.20(v)
uniform
§13.20(i)
—
§13.21(iv)
asymptotic expansions for large argument
§13.19
—
§13.19
error bounds
§13.19
exponentially-improved
§13.19
computation
Ch.13
connection formulas
§13.14(vii)
continued fractions
§13.17
definitions
§13.14(i)
derivatives
§13.15(ii)
differential equation
,
see
Whittaker’s equation
.
expansions in series of
§13.24(i)
integral representations
along the real line
§13.16(i)
—
§13.16(i)
contour integrals
§13.16(ii)
Mellin–Barnes type
§13.16(iii)
integral transforms in terms of
§13.23(iv)
integrals
§13.16(i)
compendia
§13.23(v)
Fourier transforms
§13.23(ii)
Hankel transforms
§13.23(iii)
—
§13.23(iii)
Laplace transforms
§13.23(i)
Mellin transforms
§13.23(i)
interrelations
§13.14(vii)
large argument
§2.11(vi)
limiting forms
as
z
→
∞
§13.14(iv)
as
z
→
0
§13.14(iii)
Morse oscillator
§18.39(i)
multiplication theorems
§13.26(iii)
notation
§13.1
power series
§13.14(i)
—
§13.14(i)
principal branches (or values)
§13.14(i)
products
§13.25
recurrence relations
§13.15(i)
relations to other functions
Airy functions
§13.18(iii)
Coulomb functions
§33.14(ii)
,
§33.14(iii)
,
§33.16(iii)
,
§33.16(v)
,
§33.2(iii)
elementary functions
§13.18(i)
error functions
§13.18(ii)
incomplete gamma functions
§13.18(ii)
Kummer functions
§13.14(i)
modified Bessel functions
§13.18(iii)
orthogonal polynomials
§13.18(v)
parabolic cylinder functions
§13.18(iv)
series expansions
§13.24
—
§13.26(ii)
addition theorems
§13.26(ii)
in Bessel functions or modified Bessel functions
§13.24(ii)
multiplication theorems
§13.26(iii)
power
§13.14(i)
—
§13.14(i)
Wronskians
§13.14(vi)
—
§13.14(vi)
zeros
asymptotic approximations
§13.22
distribution
§13.22
inequalities
§13.22
number of
§13.22
Whittaker–Hill equation
§28.31(i)
applications
§28.32(ii)
separation constants
§28.32(ii)
Whittaker’s equation
§13.14(i)
fundamental solutions
§13.14(v)
numerically satisfactory solutions
§13.14(v)
relation to Kummer’s equation
§13.14(i)
standard solutions
§13.14(i)
Wigner
3
j
,
6
j
,
9
j
symbols
,
see
3
j
symbols
,
6
j
symbols
,
and
9
j
symbols
.
Wilf–Zeilberger algorithm
applied to generalized hypergeometric functions
§16.4(iii)
Wilkinson’s polynomial
§3.8(vi)
Wilson class orthogonal polynomials
§18.25
—
§18.26(v)
asymptotic approximations
§18.26(v)
definitions
§18.25
differences
§18.26(iii)
dualities
§18.21(i)
generating functions
§18.26(iv)
interrelations with other orthogonal polynomials
Figure 18.21.1
,
Figure 18.21.1
,
Figure 18.21.1
,
§18.26(ii)
—
§18.26(ii)
leading coefficients
Table 18.25.2
notation
§18.1(ii)
orthogonality properties
Table 18.25.1
relations to other functions
generalized hypergeometric functions
§18.26(i)
,
§18.26(iv)
6
j
symbols
§18.38(iii)
standardizations
§18.25(ii)
—
§18.25(iii)
transformations of variable
Table 18.25.1
weight functions
§18.25(ii)
—
§18.25(iii)
Wilson polynomials
,
see
Wilson class orthogonal polynomials
.
winding number
of closed contour
§1.9(iii)
WKB or WKBJ approximation
,
see
Liouville–Green (or WKBJ) approximation
.
Wronskian
differential equations
§1.13(i)
Wynn’s cross rule
for Padé approximations
§3.11(iv)
Wynn’s epsilon algorithm
for sequences
§3.9(iv)