Index F
-
Faà di Bruno’s formula
-
Fabry’s transformation
-
factorials (rising or falling)
§26.1
-
factorization
-
Faddeeva (or Faddeyeva) function
§7.21
-
fast Fourier transform
§3.11(v)
-
Favard’s theorem
§18.2(viii)
-
Fay’s trisecant identity
-
Riemann theta functions with characteristics
§21.7(ii)
-
Fejér kernel
-
Fermat numbers
-
Fermat’s last theorem
-
Bernoulli and Euler numbers and polynomials
§24.17(iii)
-
Fermi–Dirac integrals
-
Ferrers board
§26.15
-
Ferrers function
-
of the first kind
-
integral equation for Lamé functions
§29.8
-
Ferrers functions
§14.1
-
Ferrers graph
§26.9(i)
-
Feynman diagrams
-
Feynman path integrals
-
Fibonacci numbers §24.15(iv), §26.11
-
fine structure constant
-
finite Fourier series
-
fixed point
§3.8(i)
-
floating-point arithmetic
-
Floquet solutions
-
Floquet’s theorem
-
fluid dynamics
-
fold canonical integral §36.2(i), §36.7(i)
-
fold catastrophe §36.2(i), §36.7(i)
-
formally self adjoint linear operator
-
formally self-adjoint differential operators
-
formally self-adjoint operators
-
Fourier cosine and sine transforms
-
Fourier eigenfunction expansion
-
Fourier integral
-
Fourier series
§1.8—§1.8(v)
-
Fourier transform
§1.14(i)—§1.14(ii)
-
Fourier-series expansions
-
Fourier–Bessel expansion
-
fractals
§3.8(viii)
-
fractional derivatives
§1.15(vii)
-
fractional integrals
§1.15(vi)
-
fractional linear transformation, see bilinear transformation.
-
Fresnel integrals
§7.2(iii)
-
Freud weight
-
Freud weight function
§18.32
-
Frobenius’ identity
-
Riemann theta functions with characteristics
§21.7(iii)
-
Fuchsian equation
-
functions
-
functions of matrix argument
§35.1
-
fundamental theorem of arithmetic
§27.2(i)
-
fundamental theorem of calculus
§1.4(v)