About the Project

.世界杯决赛32『网址:mxsty.cc』.微博世界杯榜-m4x5s2-2022年11月29日2时45分15秒

AdvancedHelp

(0.002 seconds)

21—30 of 208 matching pages

21: 26.12 Plane Partitions
Table 26.12.1: Plane partitions.
n pp ( n ) n pp ( n ) n pp ( n )
11 859 28 24 83234 45 17740 79109
12 1479 29 37 59612 46 25435 35902
15 6879 32 127 33429 49 73910 26522
26.12.26 pp ( n ) ( ζ ( 3 ) ) 7 / 36 2 11 / 36 ( 3 π ) 1 / 2 n 25 / 36 exp ( 3 ( ζ ( 3 ) ) 1 / 3 ( 1 2 n ) 2 / 3 + ζ ( 1 ) ) ,
22: Bibliography C
  • J. B. Campbell (1984) Determination of ν -zeros of Hankel functions. Comput. Phys. Comm. 32 (3), pp. 333–339.
  • B. C. Carlson (1966) Some inequalities for hypergeometric functions. Proc. Amer. Math. Soc. 17 (1), pp. 32–39.
  • L. Chen, M. E. H. Ismail, and P. Simeonov (1999) Asymptotics of Racah coefficients and polynomials. J. Phys. A 32 (3), pp. 537–553.
  • R. C. Y. Chin and G. W. Hedstrom (1978) A dispersion analysis for difference schemes: Tables of generalized Airy functions. Math. Comp. 32 (144), pp. 1163–1170.
  • D. A. Cox (1985) Gauss and the arithmetic-geometric mean. Notices Amer. Math. Soc. 32 (2), pp. 147–151.
  • 23: Bibliography M
  • W. Magnus, F. Oberhettinger, and R. P. Soni (1966) Formulas and Theorems for the Special Functions of Mathematical Physics. 3rd edition, Springer-Verlag, New York-Berlin.
  • L. C. Maximon (1991) On the evaluation of the integral over the product of two spherical Bessel functions. J. Math. Phys. 32 (3), pp. 642–648.
  • H. J. W. Müller (1966b) Asymptotic expansions of ellipsoidal wave functions in terms of Hermite functions. Math. Nachr. 32, pp. 49–62.
  • H. J. W. Müller (1966c) On asymptotic expansions of ellipsoidal wave functions. Math. Nachr. 32, pp. 157–172.
  • Y. Murata (1985) Rational solutions of the second and the fourth Painlevé equations. Funkcial. Ekvac. 28 (1), pp. 1–32.
  • 24: Bibliography B
  • P. Baldwin (1985) Zeros of generalized Airy functions. Mathematika 32 (1), pp. 104–117.
  • R. Barakat (1961) Evaluation of the incomplete gamma function of imaginary argument by Chebyshev polynomials. Math. Comp. 15 (73), pp. 7–11.
  • R. W. Barnard, K. Pearce, and K. C. Richards (2000) A monotonicity property involving F 2 3 and comparisons of the classical approximations of elliptical arc length. SIAM J. Math. Anal. 32 (2), pp. 403–419.
  • F. Bethuel (1998) Vortices in Ginzburg-Landau Equations. In Proceedings of the International Congress of Mathematicians, Vol. III (Berlin, 1998), pp. 11–19.
  • J. M. Blair, C. A. Edwards, and J. H. Johnson (1978) Rational Chebyshev approximations for the Bickley functions K i n ( x ) . Math. Comp. 32 (143), pp. 876–886.
  • 25: 30.9 Asymptotic Approximations and Expansions
    2 6 β 1 = q 3 11 q + 32 m 2 q ,
    2 20 β 5 = 527 q 7 61529 q 5 10 43961 q 3 22 41599 q + 32 m 2 ( 5739 q 5 + 1 27550 q 3 + 2 98951 q ) 2048 m 4 ( 355 q 3 + 1505 q ) + 65536 m 6 q .
    26: Bibliography S
  • J. L. Schonfelder (1978) Chebyshev expansions for the error and related functions. Math. Comp. 32 (144), pp. 1232–1240.
  • M. J. Seaton (1984) The accuracy of iterated JWBK approximations for Coulomb radial functions. Comput. Phys. Comm. 32 (2), pp. 115–119.
  • N. T. Shawagfeh (1992) The Laplace transforms of products of Airy functions. Dirāsāt Ser. B Pure Appl. Sci. 19 (2), pp. 7–11.
  • A. O. Smirnov (2002) Elliptic Solitons and Heun’s Equation. In The Kowalevski Property (Leeds, UK, 2000), V. B. Kuznetsov (Ed.), CRM Proc. Lecture Notes, Vol. 32, pp. 287–306.
  • P. Spellucci and P. Pulay (1975) Effective calculation of the incomplete gamma function for parameter values α = ( 2 n + 1 ) / 2 , n = 0 , , 5 . Angew. Informatik 17, pp. 30–32.
  • 27: Peter A. Clarkson
    28: Bibliography F
  • B. R. Fabijonas (2004) Algorithm 838: Airy functions. ACM Trans. Math. Software 30 (4), pp. 491–501.
  • N. Fleury and A. Turbiner (1994) Polynomial relations in the Heisenberg algebra. J. Math. Phys. 35 (11), pp. 6144–6149.
  • A. S. Fokas and M. J. Ablowitz (1982) On a unified approach to transformations and elementary solutions of Painlevé equations. J. Math. Phys. 23 (11), pp. 2033–2042.
  • P. J. Forrester and N. S. Witte (2004) Application of the τ -function theory of Painlevé equations to random matrices: P VI , the JUE, CyUE, cJUE and scaled limits. Nagoya Math. J. 174, pp. 29–114.
  • L. W. Fullerton (1972) Algorithm 435: Modified incomplete gamma function. Comm. ACM 15 (11), pp. 993–995.
  • 29: Bibliography D
  • M. D’Ocagne (1904) Sur une classe de nombres rationnels réductibles aux nombres de Bernoulli. Bull. Sci. Math. (2) 28, pp. 2932 (French).
  • A. R. DiDonato (1978) An approximation for χ e t 2 / 2 t p 𝑑 t , χ > 0 , p real. Math. Comp. 32 (141), pp. 271–275.
  • B. A. Dubrovin (1981) Theta functions and non-linear equations. Uspekhi Mat. Nauk 36 (2(218)), pp. 11–80 (Russian).
  • T. M. Dunster (2001c) Uniform asymptotic expansions for the reverse generalized Bessel polynomials, and related functions. SIAM J. Math. Anal. 32 (5), pp. 987–1013.
  • J. Dutka (1981) The incomplete beta function—a historical profile. Arch. Hist. Exact Sci. 24 (1), pp. 1129.
  • 30: 3.1 Arithmetics and Error Measures
    In the case of the normalized binary interchange formats, the representation of data for binary32 (previously single precision) ( N = 32 , p = 24 , E min = 126 , E max = 127 ), binary64 (previously double precision) ( N = 64 , p = 53 , E min = 1022 , E max = 1023 ) and binary128 (previously quad precision) ( N = 128 , p = 113 , E min = 16382 , E max = 16383 ) are as in Figure 3.1.1. The respective machine precisions are 1 2 ϵ M = 0.596 × 10 7 , 1 2 ϵ M = 0.111 × 10 15 and 1 2 ϵ M = 0.963 × 10 34 . …