15.4 Special Cases15.6 Integral Representations

§15.5 Derivatives and Contiguous Functions

Contents

§15.5(i) Differentiation Formulas

15.5.1\frac{d}{dz}\mathop{F\/}\nolimits\!\left(a,b;c;z\right)=\frac{ab}{c}\mathop{F\/}\nolimits\!\left(a+1,b+1;c+1;z\right),
15.5.2\frac{{d}^{n}}{{dz}^{n}}\mathop{F\/}\nolimits\!\left(a,b;c;z\right)=\frac{\left(a\right)_{{n}}\left(b\right)_{{n}}}{\left(c\right)_{{n}}}\*\mathop{F\/}\nolimits\!\left(a+n,b+n;c+n;z\right).
15.5.3\left(z\frac{d}{dz}z\right)^{n}\left(z^{{a-1}}\mathop{F\/}\nolimits\!\left(a,b;c;z\right)\right)=\left(a\right)_{{n}}z^{{a+n-1}}\mathop{F\/}\nolimits\!\left(a+n,b;c;z\right).
15.5.4\frac{{d}^{n}}{{dz}^{n}}\left(z^{{c-1}}\mathop{F\/}\nolimits\!\left(a,b;c;z\right)\right)=\left(c-n\right)_{{n}}z^{{c-n-1}}\mathop{F\/}\nolimits\!\left(a,b;c-n;z\right).
15.5.5\left(z\frac{d}{dz}z\right)^{n}\left(z^{{c-a-1}}(1-z)^{{a+b-c}}\mathop{F\/}\nolimits\!\left(a,b;c;z\right)\right)=\left(c-a\right)_{{n}}z^{{c-a+n-1}}(1-z)^{{a-n+b-c}}\*\mathop{F\/}\nolimits\!\left(a-n,b;c;z\right).
15.5.6\frac{{d}^{n}}{{dz}^{n}}\left((1-z)^{{a+b-c}}\mathop{F\/}\nolimits\!\left(a,b;c;z\right)\right)=\frac{\left(c-a\right)_{{n}}\left(c-b\right)_{{n}}}{\left(c\right)_{{n}}}(1-z)^{{a+b-c-n}}\*\mathop{F\/}\nolimits\!\left(a,b;c+n;z\right).
15.5.7\left((1-z)\frac{d}{dz}(1-z)\right)^{n}\left((1-z)^{{a-1}}\mathop{F\/}\nolimits\!\left(a,b;c;z\right)\right)=(-1)^{n}\frac{\left(a\right)_{{n}}\left(c-b\right)_{{n}}}{\left(c\right)_{{n}}}(1-z)^{{a+n-1}}\*\mathop{F\/}\nolimits\!\left(a+n,b;c+n;z\right).
15.5.8\left((1-z)\frac{d}{dz}(1-z)\right)^{n}\left(z^{{c-1}}(1-z)^{{b-c}}\mathop{F\/}\nolimits\!\left(a,b;c;z\right)\right)=\left(c-n\right)_{{n}}z^{{c-n-1}}(1-z)^{{b-c+n}}\*\mathop{F\/}\nolimits\!\left(a-n,b;c-n;z\right).
15.5.9\frac{{d}^{n}}{{dz}^{n}}\left(z^{{c-1}}(1-z)^{{a+b-c}}\mathop{F\/}\nolimits\!\left(a,b;c;z\right)\right)=\left(c-n\right)_{{n}}z^{{c-n-1}}(1-z)^{{a+b-c-n}}\*\mathop{F\/}\nolimits\!\left(a-n,b-n;c-n;z\right).

Other versions of several of the identities in this subsection can be constructed with the aid of the operator identity

15.5.10\left(z\frac{d}{dz}z\right)^{n}=z^{n}\frac{{d}^{n}}{{dz}^{n}}z^{n},n=1,2,3,\dots.

See Erdélyi et al. (1953a, pp. 102–103).

§15.5(ii) Contiguous Functions

The six functions \mathop{F\/}\nolimits\!\left(a\pm 1,b;c;z\right), \mathop{F\/}\nolimits\!\left(a,b\pm 1;c;z\right), \mathop{F\/}\nolimits\!\left(a,b;c\pm 1;z\right) are said to be contiguous to \mathop{F\/}\nolimits\!\left(a,b;c;z\right).

15.5.11(c-a)\mathop{F\/}\nolimits\!\left(a-1,b;c;z\right)+\left(2a-c+(b-a)z\right)\mathop{F\/}\nolimits\!\left(a,b;c;z\right)+a(z-1)\mathop{F\/}\nolimits\!\left(a+1,b;c;z\right)=0,
15.5.12(b-a)\mathop{F\/}\nolimits\!\left(a,b;c;z\right)+a\mathop{F\/}\nolimits\!\left(a+1,b;c;z\right)-b\mathop{F\/}\nolimits\!\left(a,b+1;c;z\right)=0,
15.5.13(c-a-b)\mathop{F\/}\nolimits\!\left(a,b;c;z\right)+a(1-z)\mathop{F\/}\nolimits\!\left(a+1,b;c;z\right)-(c-b)\mathop{F\/}\nolimits\!\left(a,b-1;c;z\right)=0,
15.5.14c\left(a+(b-c)z\right)\mathop{F\/}\nolimits\!\left(a,b;c;z\right)-ac(1-z)\mathop{F\/}\nolimits\!\left(a+1,b;c;z\right)+(c-a)(c-b)z\mathop{F\/}\nolimits\!\left(a,b;c+1;z\right)=0,
15.5.15(c-a-1)\mathop{F\/}\nolimits\!\left(a,b;c;z\right)+a\mathop{F\/}\nolimits\!\left(a+1,b;c;z\right)-(c-1)\mathop{F\/}\nolimits\!\left(a,b;c-1;z\right)=0,
15.5.16c(1-z)\mathop{F\/}\nolimits\!\left(a,b;c;z\right)-c\mathop{F\/}\nolimits\!\left(a-1,b;c;z\right)+(c-b)z\mathop{F\/}\nolimits\!\left(a,b;c+1;z\right)=0,
15.5.17\left(a-1+(b+1-c)z\right)\mathop{F\/}\nolimits\!\left(a,b;c;z\right)+(c-a)\mathop{F\/}\nolimits\!\left(a-1,b;c;z\right)-(c-1)(1-z)\mathop{F\/}\nolimits\!\left(a,b;c-1;z\right)=0,
15.5.18c(c-1)(z-1)\mathop{F\/}\nolimits\!\left(a,b;c-1;z\right)+{c\left(c-1-(2c-a-b-1)z\right)}\mathop{F\/}\nolimits\!\left(a,b;c;z\right)+(c-a)(c-b)z\mathop{F\/}\nolimits\!\left(a,b;c+1;z\right)=0.

By repeated applications of (15.5.11)–(15.5.18) any function \mathop{F\/}\nolimits\!\left(a+k,b+\ell;c+m;z\right), in which k,\ell,m are integers, can be expressed as a linear combination of \mathop{F\/}\nolimits\!\left(a,b;c;z\right) and any one of its contiguous functions, with coefficients that are rational functions of a,b,c, and z.