13.2 Definitions and Basic Properties13.4 Integral Representations

§13.3 Recurrence Relations and Derivatives

Contents

§13.3(i) Recurrence Relations

13.3.1(b-a)\mathop{M\/}\nolimits\!\left(a-1,b,z\right)+(2a-b+z)\mathop{M\/}\nolimits\!\left(a,b,z\right)-a\mathop{M\/}\nolimits\!\left(a+1,b,z\right)=0,
13.3.2b(b-1)\mathop{M\/}\nolimits\!\left(a,b-1,z\right)+b(1-b-z)\mathop{M\/}\nolimits\!\left(a,b,z\right)+z(b-a)\mathop{M\/}\nolimits\!\left(a,b+1,z\right)=0,
13.3.3(a-b+1)\mathop{M\/}\nolimits\!\left(a,b,z\right)-a\mathop{M\/}\nolimits\!\left(a+1,b,z\right)+(b-1)\mathop{M\/}\nolimits\!\left(a,b-1,z\right)=0,
13.3.4b\mathop{M\/}\nolimits\!\left(a,b,z\right)-b\mathop{M\/}\nolimits\!\left(a-1,b,z\right)-z\mathop{M\/}\nolimits\!\left(a,b+1,z\right)=0,
13.3.5b(a+z)\mathop{M\/}\nolimits\!\left(a,b,z\right)+z(a-b)\mathop{M\/}\nolimits\!\left(a,b+1,z\right)-ab\mathop{M\/}\nolimits\!\left(a+1,b,z\right)=0,
13.3.6(a-1+z)\mathop{M\/}\nolimits\!\left(a,b,z\right)+(b-a)\mathop{M\/}\nolimits\!\left(a-1,b,z\right)+(1-b)\mathop{M\/}\nolimits\!\left(a,b-1,z\right)=0.
13.3.7\mathop{U\/}\nolimits\!\left(a-1,b,z\right)+(b-2a-z)\mathop{U\/}\nolimits\!\left(a,b,z\right)+a(a-b+1)\mathop{U\/}\nolimits\!\left(a+1,b,z\right)=0,
13.3.8(b-a-1)\mathop{U\/}\nolimits\!\left(a,b-1,z\right)+(1-b-z)\mathop{U\/}\nolimits\!\left(a,b,z\right)+z\mathop{U\/}\nolimits\!\left(a,b+1,z\right)=0,
13.3.9\mathop{U\/}\nolimits\!\left(a,b,z\right)-a\mathop{U\/}\nolimits\!\left(a+1,b,z\right)-\mathop{U\/}\nolimits\!\left(a,b-1,z\right)=0,
13.3.10(b-a)\mathop{U\/}\nolimits\!\left(a,b,z\right)+\mathop{U\/}\nolimits\!\left(a-1,b,z\right)-z\mathop{U\/}\nolimits\!\left(a,b+1,z\right)=0,
13.3.11(a+z)\mathop{U\/}\nolimits\!\left(a,b,z\right)-z\mathop{U\/}\nolimits\!\left(a,b+1,z\right)+a(b-a-1)\mathop{U\/}\nolimits\!\left(a+1,b,z\right)=0,
13.3.12(a-1+z)\mathop{U\/}\nolimits\!\left(a,b,z\right)-\mathop{U\/}\nolimits\!\left(a-1,b,z\right)+(a-b+1)\mathop{U\/}\nolimits\!\left(a,b-1,z\right)=0.

Kummer’s differential equation (13.2.1) is equivalent to

13.3.13(a+1)z\mathop{M\/}\nolimits\!\left(a+2,b+2,z\right)+(b+1)(b-z)\mathop{M\/}\nolimits\!\left(a+1,b+1,z\right)-b(b+1)\mathop{M\/}\nolimits\!\left(a,b,z\right)=0,

and

13.3.14(a+1)z\mathop{U\/}\nolimits\!\left(a+2,b+2,z\right)+(z-b)\mathop{U\/}\nolimits\!\left(a+1,b+1,z\right)-\mathop{U\/}\nolimits\!\left(a,b,z\right)=0.

§13.3(ii) Differentiation Formulas

13.3.15\frac{d}{dz}\mathop{M\/}\nolimits\!\left(a,b,z\right)=\frac{a}{b}\mathop{M\/}\nolimits\!\left(a+1,b+1,z\right),
13.3.16\frac{{d}^{n}}{{dz}^{n}}\mathop{M\/}\nolimits\!\left(a,b,z\right)=\frac{\left(a\right)_{{n}}}{\left(b\right)_{{n}}}\mathop{M\/}\nolimits\!\left(a+n,b+n,z\right),
13.3.17\left(z\frac{d}{dz}z\right)^{{n}}\left(z^{{a-1}}\mathop{M\/}\nolimits\!\left(a,b,z\right)\right)=\left(a\right)_{{n}}z^{{a+n-1}}\mathop{M\/}\nolimits\!\left(a+n,b,z\right),
13.3.18\frac{{d}^{n}}{{dz}^{n}}\left(z^{{b-1}}\mathop{M\/}\nolimits\!\left(a,b,z\right)\right)=\left(b-n\right)_{{n}}z^{{b-n-1}}\mathop{M\/}\nolimits\!\left(a,b-n,z\right),
13.3.19\left(z\frac{d}{dz}z\right)^{{n}}\left(z^{{b-a-1}}e^{{-z}}\mathop{M\/}\nolimits\!\left(a,b,z\right)\right)=\left(b-a\right)_{{n}}z^{{b-a+n-1}}e^{{-z}}\mathop{M\/}\nolimits\!\left(a-n,b,z\right),
13.3.20\frac{{d}^{n}}{{dz}^{n}}\left(e^{{-z}}\mathop{M\/}\nolimits\!\left(a,b,z\right)\right)=(-1)^{{n}}\frac{\left(b-a\right)_{{n}}}{\left(b\right)_{{n}}}e^{{-z}}\mathop{M\/}\nolimits\!\left(a,b+n,z\right),
13.3.21\frac{{d}^{n}}{{dz}^{n}}\left(z^{{b-1}}e^{{-z}}\mathop{M\/}\nolimits\!\left(a,b,z\right)\right)=\left(b-n\right)_{{n}}z^{{b-n-1}}e^{{-z}}\mathop{M\/}\nolimits\!\left(a-n,b-n,z\right).
13.3.22\frac{d}{dz}\mathop{U\/}\nolimits\!\left(a,b,z\right)=-a\mathop{U\/}\nolimits\!\left(a+1,b+1,z\right),
13.3.23\frac{{d}^{n}}{{dz}^{n}}\mathop{U\/}\nolimits\!\left(a,b,z\right)=(-1)^{{n}}\left(a\right)_{{n}}\mathop{U\/}\nolimits\!\left(a+n,b+n,z\right),
13.3.24\left(z\frac{d}{dz}z\right)^{{n}}\left(z^{{a-1}}\mathop{U\/}\nolimits\!\left(a,b,z\right)\right)=\left(a\right)_{{n}}\left(a-b+1\right)_{{n}}z^{{a+n-1}}\mathop{U\/}\nolimits\!\left(a+n,b,z\right),
13.3.25\frac{{d}^{n}}{{dz}^{n}}\left(z^{{b-1}}\mathop{U\/}\nolimits\!\left(a,b,z\right)\right)=(-1)^{{n}}\left(a-b+1\right)_{{n}}z^{{b-n-1}}\mathop{U\/}\nolimits\!\left(a,b-n,z\right),
13.3.26\left(z\frac{d}{dz}z\right)^{{n}}\left(z^{{b-a-1}}e^{{-z}}\mathop{U\/}\nolimits\!\left(a,b,z\right)\right)=(-1)^{{n}}z^{{b-a+n-1}}e^{{-z}}\mathop{U\/}\nolimits\!\left(a-n,b,z\right),
13.3.27\frac{{d}^{n}}{{dz}^{n}}\left(e^{{-z}}\mathop{U\/}\nolimits\!\left(a,b,z\right)\right)=(-1)^{{n}}e^{{-z}}\mathop{U\/}\nolimits\!\left(a,b+n,z\right),
13.3.28\frac{{d}^{n}}{{dz}^{n}}\left(z^{{b-1}}e^{{-z}}\mathop{U\/}\nolimits\!\left(a,b,z\right)\right)=(-1)^{{n}}z^{{b-n-1}}e^{{-z}}\mathop{U\/}\nolimits\!\left(a-n,b-n,z\right).

Other versions of several of the identities in this subsection can be constructed with the aid of the operator identity

13.3.29\left(z\frac{d}{dz}z\right)^{n}=z^{n}\frac{{d}^{n}}{{dz}^{n}}z^{n},n=1,2,3,\dots.