25.4 Reflection Formulas25.6 Integer Arguments

§25.5 Integral Representations

Contents

§25.5(i) In Terms of Elementary Functions

Throughout this subsection s\neq 1.

25.5.5\mathop{\zeta\/}\nolimits\!\left(s\right)=-s\int _{0}^{\infty}\frac{x-\left\lfloor x\right\rfloor-\frac{1}{2}}{x^{{s+1}}}dx,-1<\realpart{s}<0.
25.5.6\mathop{\zeta\/}\nolimits\!\left(s\right)=\frac{1}{2}+\frac{1}{s-1}+\frac{1}{\mathop{\Gamma\/}\nolimits\!\left(s\right)}\int _{0}^{\infty}\left(\frac{1}{e^{x}-1}-\frac{1}{x}+\frac{1}{2}\right)\frac{x^{{s-1}}}{e^{x}}dx,\realpart{s}>-1.

§25.5(ii) In Terms of Other Functions

25.5.13\mathop{\zeta\/}\nolimits\!\left(s\right)=\frac{\pi^{{s/2}}}{s(s-1)\mathop{\Gamma\/}\nolimits\!\left(\frac{1}{2}s\right)}+\frac{\pi^{{s/2}}}{\mathop{\Gamma\/}\nolimits\!\left(\frac{1}{2}s\right)}\*\int _{1}^{\infty}\left(x^{{s/2}}+x^{{(1-s)/2}}\right)\frac{\omega(x)}{x}dx,s\neq 1,

where

25.5.14\omega(x)=\sum _{{n=1}}^{\infty}e^{{-n^{2}\pi x}}=\frac{1}{2}\left(\mathop{\theta _{{3}}\/}\nolimits\!\left(0\middle|ix\right)-1\right).

For \mathop{\theta _{{3}}\/}\nolimits see §20.2(i). For similar representations involving other theta functions see Erdélyi et al. (1954a, p. 339).

§25.5(iii) Contour Integrals

25.5.20\mathop{\zeta\/}\nolimits\!\left(s\right)=\frac{\mathop{\Gamma\/}\nolimits\!\left(1-s\right)}{2\pi i}\int _{{-\infty}}^{{(0+)}}\frac{z^{{s-1}}}{e^{{-z}}-1}dz,s\neq 1,2,\dots,

where the integration contour is a loop around the negative real axis; it starts at -\infty, encircles the origin once in the positive direction without enclosing any of the points z=\pm 2\pi i, \pm 4\pi i, …, and returns to -\infty. Equivalently,

25.5.21\mathop{\zeta\/}\nolimits\!\left(s\right)=\frac{\mathop{\Gamma\/}\nolimits\!\left(1-s\right)}{2\pi i(1-2^{{1-s}})}\*\int _{{-\infty}}^{{(0+)}}\frac{z^{{s-1}}}{e^{{-z}}+1}dz,s\neq 1,2,\dots.

The contour here is any loop that encircles the origin in the positive direction not enclosing any of the points \pm\pi i, \pm 3\pi i, ….