32.5 Integral Equations32.7 Bäcklund Transformations

§32.6 Hamiltonian Structure

Contents

§32.6(i) Introduction

\mbox{P}_{{\mbox{\scriptsize I}}}\mbox{P}_{{\mbox{\scriptsize VI}}} can be written as a Hamiltonian system

32.6.1
\frac{dq}{dz}=\frac{\partial\mathrm{H}}{\partial p},
\frac{dp}{dz}=-\frac{\partial\mathrm{H}}{\partial q},

for suitable (non-autonomous) Hamiltonian functions \mathrm{H}(q,p,z).

§32.6(ii) First Painlevé Equation

The Hamiltonian for \mbox{P}_{{\mbox{\scriptsize I}}} is

32.6.2\mathrm{H}_{{\mbox{\scriptsize I}}}(q,p,z)=\tfrac{1}{2}p^{2}-2q^{3}-zq,

and so

32.6.3q^{{\prime}}=p,
32.6.4p^{{\prime}}=6q^{2}+z.

Then q=w satisfies \mbox{P}_{{\mbox{\scriptsize I}}}. The function

32.6.5\sigma=\mathrm{H}_{{\mbox{\scriptsize I}}}(q,p,z),

defined by (32.6.2) satisfies

32.6.6\left(\sigma^{{\prime\prime}}\right)^{2}+4\left(\sigma^{{\prime}}\right)^{3}+2z\sigma^{{\prime}}-2\sigma=0.

Conversely, if \sigma is a solution of (32.6.6), then

32.6.7q=-\sigma^{{\prime}},
32.6.8p=-\sigma^{{\prime\prime}},

are solutions of (32.6.3) and (32.6.4).

§32.6(iii) Second Painlevé Equation

The Hamiltonian for \mbox{P}_{{\mbox{\scriptsize II}}} is

32.6.9\mathrm{H}_{{\mbox{\scriptsize II}}}(q,p,z)=\tfrac{1}{2}p^{2}-(q^{2}+\tfrac{1}{2}z)p-(\alpha+\tfrac{1}{2})q,

and so

32.6.10q^{{\prime}}=p-q^{2}-\tfrac{1}{2}z,
32.6.11p^{{\prime}}=2qp+\alpha+\tfrac{1}{2}.

Then q=w satisfies \mbox{P}_{{\mbox{\scriptsize II}}} and p satisfies

32.6.12pp^{{\prime\prime}}=\tfrac{1}{2}(p^{{\prime}})^{2}+2p^{3}-zp^{2}-\tfrac{1}{2}(\alpha+\tfrac{1}{2})^{2}.

The function \sigma(z)=\mathrm{H}_{{\mbox{\scriptsize II}}}(q,p,z) defined by (32.6.9) satisfies

32.6.13\left(\sigma^{{\prime\prime}}\right)^{2}+4\left(\sigma^{{\prime}}\right)^{3}+2\sigma^{{\prime}}\left(z\sigma^{{\prime}}-\sigma\right)=\tfrac{1}{4}(\alpha+\tfrac{1}{2})^{2}.

Conversely, if \sigma(z) is a solution of (32.6.13), then

32.6.14q=\ifrac{(4\sigma^{{\prime\prime}}+2\alpha+1)}{(8\sigma^{{\prime}})},
32.6.15p=-2\sigma^{{\prime}},

are solutions of (32.6.10) and (32.6.11).

§32.6(iv) Third Painlevé Equation

The Hamiltonian for \mbox{P}_{{\mbox{\scriptsize III}}} is

32.6.16z\mathrm{H}_{{\mbox{\scriptsize III}}}(q,p,z)=q^{2}p^{2}-{\left(\kappa _{{\infty}}zq^{2}+(2\theta _{0}+1)q-\kappa _{0}z\right)p}+\kappa _{{\infty}}(\theta _{0}+\theta _{{\infty}})zq,

and so

32.6.17zq^{{\prime}}=2q^{2}p-\kappa _{{\infty}}zq^{2}-(2\theta _{0}+1)q+\kappa _{0}z,
32.6.18zp^{{\prime}}=-2qp^{2}+2\kappa _{{\infty}}zqp+(2\theta _{0}+1)p-\kappa _{{\infty}}(\theta _{0}+\theta _{\infty})z.

Then q=w satisfies \mbox{P}_{{\mbox{\scriptsize III}}} with

32.6.19(\alpha,\beta,\gamma,\delta)=\left(-2\kappa _{{\infty}}\theta _{{\infty}},2\kappa _{0}(\theta _{0}+1),\kappa _{{\infty}}^{2},-\kappa _{0}^{2}\right).

The function

32.6.20\sigma=z\mathrm{H}_{{\mbox{\scriptsize III}}}(q,p,z)+pq+\theta _{0}^{2}-\tfrac{1}{2}\kappa _{0}\kappa _{{\infty}}z^{2}

defined by (32.6.16) satisfies

32.6.21(z\sigma^{{\prime\prime}}-\sigma^{{\prime}})^{2}+2\left((\sigma^{{\prime}})^{2}-\kappa _{0}^{2}\kappa _{{\infty}}^{2}z^{2}\right)(z\sigma^{{\prime}}-2\sigma)+8\kappa _{0}\kappa _{{\infty}}\theta _{0}\theta _{{\infty}}z\sigma^{{\prime}}=4\kappa _{0}^{2}\kappa _{{\infty}}^{2}(\theta _{0}^{2}+\theta _{{\infty}}^{2})z^{2}.

Conversely, if \sigma is a solution of (32.6.21), then

32.6.22q=\frac{\kappa _{0}\left(z\sigma^{{\prime\prime}}-(2\theta _{0}+1)\sigma^{{\prime}}+2\kappa _{0}\kappa _{{\infty}}\theta _{{\infty}}z\right)}{\kappa _{0}^{2}\kappa _{{\infty}}^{2}z^{2}-(\sigma^{{\prime}})^{2}},
32.6.23p=\ifrac{(\sigma^{{\prime}}+\kappa _{0}\kappa _{{\infty}}z)}{(2\kappa _{0})},

are solutions of (32.6.17) and (32.6.18).

The Hamiltonian for \mbox{P}^{{\prime}}_{{\mbox{\scriptsize III}}} (§32.2(iii)) is

32.6.24\zeta\mathrm{H}_{{\mbox{\scriptsize III}}}(q,p,\zeta)=q^{2}p^{2}-\left(\eta _{{\infty}}q^{2}+\theta _{0}q-\eta _{0}\zeta\right)p+\tfrac{1}{2}\eta _{{\infty}}(\theta _{0}+\theta _{{\infty}})q,

and so

32.6.25\zeta q^{{\prime}}=2q^{2}p-\eta _{{\infty}}q^{2}-\theta _{0}q+\eta _{0}\zeta,
32.6.26\zeta p^{{\prime}}=-2qp^{2}+2\eta _{{\infty}}qp+\theta _{0}p-\tfrac{1}{2}\eta _{{\infty}}(\theta _{0}+\theta _{1}).

Then q=u satisfies \mbox{P}^{{\prime}}_{{\mbox{\scriptsize III}}} with

32.6.27(\alpha,\beta,\gamma,\delta)=\left(-4\eta _{{\infty}}\theta _{{\infty}},4\eta _{0}(\theta _{0}+1),4\eta _{{\infty}}^{2},-4\eta _{0}^{2}\right).

The function

32.6.28\sigma=\zeta\mathrm{H}_{{\mbox{\scriptsize III}}}(q,p,\zeta)+\tfrac{1}{4}\theta _{0}^{2}-\tfrac{1}{2}\eta _{0}\eta _{{\infty}}\zeta

defined by (32.6.24) satisfies

32.6.29\zeta^{2}(\sigma^{{\prime\prime}})^{2}+\left(4(\sigma^{{\prime}})^{2}-\eta _{0}^{2}\eta _{{\infty}}^{2}\right)(\zeta\sigma^{{\prime}}-\sigma)+\eta _{0}\eta _{{\infty}}\theta _{0}\theta _{{\infty}}\sigma^{{\prime}}=\tfrac{1}{4}\eta _{0}^{2}\eta _{{\infty}}^{2}(\theta _{0}^{2}+\theta _{{\infty}}^{2}).

Conversely, if \sigma is a solution of (32.6.29), then

32.6.30q=\frac{\eta _{0}\left(\zeta\sigma^{{\prime\prime}}-2\theta _{0}\sigma^{{\prime}}+\eta _{0}\eta _{{\infty}}\theta _{{\infty}}\right)}{\eta _{0}^{2}\eta _{{\infty}}^{2}-4(\sigma^{{\prime}})^{2}},
32.6.31p=\ifrac{(2\sigma^{{\prime}}+\eta _{0}\eta _{{\infty}}\zeta)}{(2\eta _{0})},

are solutions of (32.6.25) and (32.6.26).

The Hamiltonian for \mbox{P}_{{\mbox{\scriptsize III}}} with \gamma=0 is

32.6.32z\mathrm{H}_{{\mbox{\scriptsize III}}}(q,p,z)=q^{2}p^{2}+(\theta q-\kappa _{0}z)p-\kappa _{{\infty}}zq,

and so

32.6.33zq^{{\prime}}=2q^{2}p+\theta q-\kappa _{0}z,
32.6.34zp^{{\prime}}=-2qp^{2}-\theta p+\kappa _{{\infty}}z.

Then q=w satisfies \mbox{P}_{{\mbox{\scriptsize III}}} with

32.6.35(\alpha,\beta,\gamma,\delta)=\left(2\kappa _{{\infty}},\kappa _{0}(\theta-1),0,-\kappa _{0}^{2}\right).

The function

32.6.36\sigma=z\mathrm{H}_{{\mbox{\scriptsize III}}}(q,p,z)+pq+\tfrac{1}{4}(\theta+1)^{2}

defined by (32.6.32) satisfies

32.6.37(z\sigma^{{\prime\prime}}-\sigma^{{\prime}})^{2}+2(\sigma^{{\prime}})^{2}(z\sigma^{{\prime}}-2\sigma)-4\kappa _{0}\kappa _{{\infty}}(\theta+1)\theta _{{\infty}}z\sigma^{{\prime}}=4\kappa _{0}^{2}\kappa _{{\infty}}^{2}z^{2}.

Conversely, if \sigma is a solution of (32.6.37), then

32.6.38q=\ifrac{\kappa _{0}\left(z\sigma^{{\prime\prime}}-\theta\sigma^{{\prime}}+2\kappa _{0}\kappa _{{\infty}}z\right)}{(\sigma^{{\prime}})^{2}},
32.6.39p=\ifrac{\sigma^{{\prime}}}{(2\kappa _{0})},

are solutions of (32.6.33) and (32.6.34).

§32.6(v) Other Painlevé Equations

For Hamiltonian structure for \mbox{P}_{{\mbox{\scriptsize IV}}} see Jimbo and Miwa (1981), Okamoto (1986); also Forrester and Witte (2001).

For Hamiltonian structure for \mbox{P}_{{\mbox{\scriptsize V}}} see Jimbo and Miwa (1981), Okamoto (1987b); also Forrester and Witte (2002).

For Hamiltonian structure for \mbox{P}_{{\mbox{\scriptsize VI}}} see Jimbo and Miwa (1981) and Okamoto (1987a); also Forrester and Witte (2004).