About the Project

.世界杯决赛彩票图片_『wn4.com_』2018世界杯谁是冠军_w6n2c9o_2022年11月30日5时21分47秒_ascio04e8

AdvancedHelp

(0.005 seconds)

11—20 of 783 matching pages

11: Bibliography
  • M. Abramowitz (1949) Asymptotic expansions of spheroidal wave functions. J. Math. Phys. Mass. Inst. Tech. 28, pp. 195–199.
  • S. Ahmed and M. E. Muldoon (1980) On the zeros of confluent hypergeometric functions. III. Characterization by means of nonlinear equations. Lett. Nuovo Cimento (2) 29 (11), pp. 353–358.
  • W. A. Al-Salam and L. Carlitz (1965) Some orthogonal q -polynomials. Math. Nachr. 30, pp. 47–61.
  • V. I. Arnol’d (1972) Normal forms of functions near degenerate critical points, the Weyl groups A k , D k , E k and Lagrangian singularities. Funkcional. Anal. i Priložen. 6 (4), pp. 3–25 (Russian).
  • R. Askey (1980) Some basic hypergeometric extensions of integrals of Selberg and Andrews. SIAM J. Math. Anal. 11 (6), pp. 938–951.
  • 12: 26.12 Plane Partitions
    26.12.9 ( h = 1 r j = 1 s h + j + t 1 h + j 1 ) 2 ;
    26.12.10 ( h = 1 r j = 1 s h + j + t 1 h + j 1 ) ( h = 1 r + 1 j = 1 s h + j + t 1 h + j 1 ) ;
    26.12.11 ( h = 1 r + 1 j = 1 s h + j + t 1 h + j 1 ) ( h = 1 r j = 1 s + 1 h + j + t 1 h + j 1 ) .
    The notation π B ( r , s , t ) denotes the sum over all plane partitions contained in B ( r , s , t ) , and | π | denotes the number of elements in π . … where σ 2 ( j ) is the sum of the squares of the divisors of j . …
    13: Bibliography K
  • G. A. Kalugin, D. J. Jeffrey, and R. M. Corless (2012) Bernstein, Pick, Poisson and related integral expressions for Lambert W . Integral Transforms Spec. Funct. 23 (11), pp. 817–829.
  • E. L. Kaplan (1948) Auxiliary table for the incomplete elliptic integrals. J. Math. Physics 27, pp. 11–36.
  • S. K. Kim (1972) The asymptotic expansion of a hypergeometric function F 2 2 ( 1 , α ; ρ 1 , ρ 2 ; z ) . Math. Comp. 26 (120), pp. 963.
  • Y. S. Kim, A. K. Rathie, and R. B. Paris (2013) An extension of Saalschütz’s summation theorem for the series F r + 2 r + 3 . Integral Transforms Spec. Funct. 24 (11), pp. 916–921.
  • K. S. Kölbig (1968) Algorithm 327: Dilogarithm [S22]. Comm. ACM 11 (4), pp. 270–271.
  • 14: Bibliography F
  • V. N. Faddeyeva and N. M. Terent’ev (1961) Tables of Values of the Function w ( z ) = e z 2 ( 1 + 2 i π 1 / 2 0 z e t 2 𝑑 t ) for Complex Argument. Edited by V. A. Fok; translated from the Russian by D. G. Fry. Mathematical Tables Series, Vol. 11, Pergamon Press, Oxford.
  • N. Fleury and A. Turbiner (1994) Polynomial relations in the Heisenberg algebra. J. Math. Phys. 35 (11), pp. 6144–6149.
  • A. S. Fokas and M. J. Ablowitz (1982) On a unified approach to transformations and elementary solutions of Painlevé equations. J. Math. Phys. 23 (11), pp. 2033–2042.
  • P. J. Forrester and N. S. Witte (2002) Application of the τ -function theory of Painlevé equations to random matrices: P V , P III , the LUE, JUE, and CUE. Comm. Pure Appl. Math. 55 (6), pp. 679–727.
  • L. W. Fullerton (1972) Algorithm 435: Modified incomplete gamma function. Comm. ACM 15 (11), pp. 993–995.
  • 15: 28.6 Expansions for Small q
    Leading terms of the power series for a m ( q ) and b m ( q ) for m 6 are: … The coefficients of the power series of a 2 n ( q ) , b 2 n ( q ) and also a 2 n + 1 ( q ) , b 2 n + 1 ( q ) are the same until the terms in q 2 n 2 and q 2 n , respectively. … Numerical values of the radii of convergence ρ n ( j ) of the power series (28.6.1)–(28.6.14) for n = 0 , 1 , , 9 are given in Table 28.6.1. Here j = 1 for a 2 n ( q ) , j = 2 for b 2 n + 2 ( q ) , and j = 3 for a 2 n + 1 ( q ) and b 2 n + 1 ( q ) . …
    §28.6(ii) Functions ce n and se n
    16: Bibliography E
  • C. Eckart (1930) The penetration of a potential barrier by electrons. Phys. Rev. 35 (11), pp. 1303–1309.
  • A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi (1953b) Higher Transcendental Functions. Vol. II. McGraw-Hill Book Company, Inc., New York-Toronto-London.
  • L. Euler (1768) Institutiones Calculi Integralis. Opera Omnia (1), Vol. 11, pp. 110–113.
  • W. N. Everitt, L. L. Littlejohn, and R. Wellman (2004) The Sobolev orthogonality and spectral analysis of the Laguerre polynomials { L n k } for positive integers k . J. Comput. Appl. Math. 171 (1-2), pp. 199–234.
  • W. N. Everitt (2008) Note on the X 1 -Laguerre orthogonal polynomials.
  • 17: 10.75 Tables
  • Wills et al. (1982) tabulates j 0 , m , j 1 , m , y 0 , m , y 1 , m for m = 1 ( 1 ) 30 , 35D.

  • MacDonald (1989) tabulates the first 30 zeros, in ascending order of absolute value in the fourth quadrant, of the function J 0 ( z ) i J 1 ( z ) , 6D. (Other zeros of this function can be obtained by reflection in the imaginary axis).

  • Abramowitz and Stegun (1964, Chapter 11) tabulates 0 x J 0 ( t ) d t , 0 x Y 0 ( t ) d t , x = 0 ( .1 ) 10 , 10D; 0 x t 1 ( 1 J 0 ( t ) ) d t , x t 1 Y 0 ( t ) d t , x = 0 ( .1 ) 5 , 8D.

  • Abramowitz and Stegun (1964, Chapter 11) tabulates e x 0 x I 0 ( t ) d t , e x x K 0 ( t ) d t , x = 0 ( .1 ) 10 , 7D; e x 0 x t 1 ( I 0 ( t ) 1 ) d t , x e x x t 1 K 0 ( t ) d t , x = 0 ( .1 ) 5 , 6D.

  • Zhang and Jin (1996, pp. 296–305) tabulates 𝗃 n ( x ) , 𝗃 n ( x ) , 𝗒 n ( x ) , 𝗒 n ( x ) , 𝗂 n ( 1 ) ( x ) , 𝗂 n ( 1 ) ( x ) , 𝗄 n ( x ) , 𝗄 n ( x ) , n = 0 ( 1 ) 10 ( 10 ) 30 , 50, 100, x = 1 , 5, 10, 25, 50, 100, 8S; x 𝗃 n ( x ) , ( x 𝗃 n ( x ) ) , x 𝗒 n ( x ) , ( x 𝗒 n ( x ) ) (Riccati–Bessel functions and their derivatives), n = 0 ( 1 ) 10 ( 10 ) 30 , 50, 100, x = 1 , 5, 10, 25, 50, 100, 8S; real and imaginary parts of 𝗃 n ( z ) , 𝗃 n ( z ) , 𝗒 n ( z ) , 𝗒 n ( z ) , 𝗂 n ( 1 ) ( z ) , 𝗂 n ( 1 ) ( z ) , 𝗄 n ( z ) , 𝗄 n ( z ) , n = 0 ( 1 ) 15 , 20(10)50, 100, z = 4 + 2 i , 20 + 10 i , 8S. (For the notation replace j , y , i , k by 𝗃 , 𝗒 , 𝗂 ( 1 ) , 𝗄 , respectively.)

  • 18: 26.16 Multiset Permutations
    Let S = { 1 a 1 , 2 a 2 , , n a n } be the multiset that has a j copies of j , 1 j n . 𝔖 S denotes the set of permutations of S for all distinct orderings of the a 1 + a 2 + + a n integers. The number of elements in 𝔖 S is the multinomial coefficient (§26.4) ( a 1 + a 2 + + a n a 1 , a 2 , , a n ) . … The q -multinomial coefficient is defined in terms of Gaussian polynomials (§26.9(ii)) by …and again with S = { 1 a 1 , 2 a 2 , , n a n } we have …
    19: 34.1 Special Notation
    ( j 1 j 2 j 3 m 1 m 2 m 3 ) ,
    { j 1 j 2 j 3 l 1 l 2 l 3 } ,
    { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } .
    An often used alternative to the 3 j symbol is the Clebsch–Gordan coefficient
    34.1.1 ( j 1 m 1 j 2 m 2 | j 1 j 2 j 3 m 3 ) = ( 1 ) j 1 j 2 + m 3 ( 2 j 3 + 1 ) 1 2 ( j 1 j 2 j 3 m 1 m 2 m 3 ) ;
    20: 9.18 Tables
  • Miller (1946) tabulates Ai ( x ) , Ai ( x ) for x = 20 ( .01 ) 2 ; log 10 Ai ( x ) , Ai ( x ) / Ai ( x ) for x = 0 ( .1 ) 25 ( 1 ) 75 ; Bi ( x ) , Bi ( x ) for x = 10 ( .1 ) 2.5 ; log 10 Bi ( x ) , Bi ( x ) / Bi ( x ) for x = 0 ( .1 ) 10 ; M ( x ) , N ( x ) , θ ( x ) , ϕ ( x ) (respectively F ( x ) , G ( x ) , χ ( x ) , ψ ( x ) ) for x = 80 ( 1 ) 30 ( .1 ) 0 . Precision is generally 8D; slightly less for some of the auxiliary functions. Extracts from these tables are included in Abramowitz and Stegun (1964, Chapter 10), together with some auxiliary functions for large arguments.

  • Harvard University (1945) tabulates the real and imaginary parts of h 1 ( z ) , h 1 ( z ) , h 2 ( z ) , h 2 ( z ) for x 0 z x 0 , 0 z y 0 , | x 0 + i y 0 | < 6.1 , with interval 0.1 in z and z . Precision is 8D. Here h 1 ( z ) = 2 4 / 3 3 1 / 6 i Ai ( e π i / 3 z ) , h 2 ( z ) = 2 4 / 3 3 1 / 6 i Ai ( e π i / 3 z ) .

  • Sherry (1959) tabulates a k , Ai ( a k ) , a k , Ai ( a k ) , k = 1 ( 1 ) 50 ; 20S.

  • National Bureau of Standards (1958) tabulates A 0 ( x ) π Hi ( x ) and A 0 ( x ) π Hi ( x ) for x = 0 ( .01 ) 1 ( .02 ) 5 ( .05 ) 11 and 1 / x = 0.01 ( .01 ) 0.1 ; 0 x A 0 ( t ) d t for x = 0.5 , 1 ( 1 ) 11 . Precision is 8D.

  • Gil et al. (2003c) tabulates the only positive zero of Gi ( z ) , the first 10 negative real zeros of Gi ( z ) and Gi ( z ) , and the first 10 complex zeros of Gi ( z ) , Gi ( z ) , Hi ( z ) , and Hi ( z ) . Precision is 11 or 12S.