§28.6 Expansions for Small
Contents
§28.6(i) Eigenvalues
Leading terms of the power series for
and
for
are:
28.6.1
28.6.2
28.6.3
28.6.4
28.6.5
28.6.6
28.6.7
28.6.8
28.6.9
28.6.10
28.6.11
28.6.12
28.6.13
Leading terms of the of the power series for
are:
28.6.14
The coefficients of the power series of
,
and
also
,
are the same until the terms in
and
, respectively. Then
28.6.15
Higher coefficients in the foregoing series can be found by equating coefficients in the following continued-fraction equations:
28.6.16
,
28.6.17
,
28.6.18
,
28.6.19
.
Numerical values of the radii of convergence
of the power series
(28.6.1)–(28.6.14) for
are given in
Table 28.6.1. Here
for
,
for
, and
for
and
. (Table
28.6.1 is reproduced from Meixner et al. (1980, §2.4).)
Table 28.6.1: Radii of convergence for power-series expansions
of eigenvalues of Mathieu’s equation.
| 0 or 1 | 1.46876 86138 | 6.92895 47588 | 3.76995 74940 | |||
|---|---|---|---|---|---|---|
| 2 | 7.26814 68935 | 16.80308 98254 | 11.27098 52655 | |||
| 3 | 16.47116 58923 | 30.09677 28376 | 22.85524 71216 | |||
| 4 | 30.42738 20960 | 48.13638 18593 | 38.52292 50099 | |||
| 5 | 47.80596 57026 | 69.59879 32769 | 58.27413 84472 | |||
| 6 | 69.92930 51764 | 95.80595 67052 | 82.10894 36067 | |||
| 7 | 95.47527 27072 | 125.43541 1314 | 110.02736 9210 | |||
| 8 | 125.76627 89677 | 159.81025 4642 | 142.02943 1279 | |||
| 9 | 159.47921 26694 | 197.60667 8692 | 178.11513 940 | |||
§28.6(ii) Functions
and
Leading terms of the power series for the normalized functions are:
28.6.21
28.6.22
28.6.23
28.6.24
28.6.25
For
,
28.6.26
For the corresponding expansions of
for
change
to
everywhere in (28.6.26).

