19.6 Special Cases19.8 Quadratic Transformations

§19.7 Connection Formulas

Contents

§19.7(i) Complete Integrals of the First and Second Kinds

§19.7(ii) Change of Modulus and Amplitude

§19.7(iii) Change of Parameter of \mathop{\Pi\/}\nolimits\!\left(\phi,\alpha^{2},k\right)

There are three relations connecting \mathop{\Pi\/}\nolimits\!\left(\phi,\alpha^{2},k\right) and \mathop{\Pi\/}\nolimits\!\left(\phi,\omega^{2},k\right), where \omega^{2} is a rational function of \alpha^{2}. If k^{2} and \alpha^{2} are real, then both integrals are circular cases or both are hyperbolic cases (see §19.2(ii)).

The first of the three relations maps each circular region onto itself and each hyperbolic region onto the other; in particular, it gives the Cauchy principal value of \mathop{\Pi\/}\nolimits\!\left(\phi,\alpha^{2},k\right) when \alpha^{2}>{\mathop{\csc\/}\nolimits^{{2}}}\phi (see (19.6.5) for the complete case). Let c={\mathop{\csc\/}\nolimits^{{2}}}\phi\neq\alpha^{2}. Then

19.7.8\mathop{\Pi\/}\nolimits\!\left(\phi,\alpha^{2},k\right)+\mathop{\Pi\/}\nolimits\!\left(\phi,\omega^{2},k\right)=\mathop{F\/}\nolimits\!\left(\phi,k\right)+\sqrt{c}\mathop{R_{C}\/}\nolimits\!\left((c-1)(c-k^{2}),(c-\alpha^{2})(c-\omega^{2})\right),\alpha^{2}\omega^{2}=k^{2}.

Since k^{2}\leq c we have \alpha^{2}\omega^{2}\leq c; hence \alpha^{2}>c implies \omega^{2}<1\leq c.

The third relation (missing from the literature of Legendre’s integrals) maps each circular region onto the other and each hyperbolic region onto the other:

19.7.10(1-\alpha^{2})\mathop{\Pi\/}\nolimits\!\left(\phi,\alpha^{2},k\right)+(1-\omega^{2})\mathop{\Pi\/}\nolimits\!\left(\phi,\omega^{2},k\right)=\mathop{F\/}\nolimits\!\left(\phi,k\right)+(1-\alpha^{2}-\omega^{2})\sqrt{c-k^{2}}\*\mathop{R_{C}\/}\nolimits\!\left(c(c-1),(c-\alpha^{2})(c-\omega^{2})\right),(k^{2}-\alpha^{2})(k^{2}-\omega^{2})=k^{2}(k^{2}-1).