§29.1 Special Notation
(For other notation see Notation for the Special Functions.)
| nonnegative integers. | |
| real variable. | |
| complex variable. | |
| real parameters, |
|
|
|
|
|
|
complete elliptic integrals of the first
kind with moduli |
All derivatives are denoted by differentials, not by primes.
The main functions treated in this chapter are the eigenvalues
,
,
,
,
the Lamé functions
,
,
,
,
and the Lamé polynomials
,
,
,
,
,
,
,
.
The notation for the eigenvalues and functions is due to
Erdélyi et al. (1955, §15.5.1) and that for the polynomials is due to
Arscott (1964b, §9.3.2). The normalization is that of
Jansen (1977, §3.1).

