10.1 Special Notation10.3 Graphics

§10.2 Definitions

Contents

§10.2(i) Bessel’s Equation

10.2.1z^{2}\frac{{d}^{2}w}{{dz}^{2}}+z\frac{dw}{dz}+(z^{2}-\nu^{2})w=0.

This differential equation has a regular singularity at z=0 with indices \pm\nu, and an irregular singularity at z=\infty of rank 1; compare §§2.7(i) and 2.7(ii).

§10.2(ii) Standard Solutions

Bessel Function of the First Kind

10.2.2\mathop{J_{{\nu}}\/}\nolimits\!\left(z\right)=(\tfrac{1}{2}z)^{\nu}\sum _{{k=0}}^{\infty}(-1)^{k}\frac{(\tfrac{1}{4}z^{2})^{k}}{k!\mathop{\Gamma\/}\nolimits\!\left(\nu+k+1\right)}.

This solution of (10.2.1) is an analytic function of z\in\Complex, except for a branch point at z=0 when \nu is not an integer. The principal branch of \mathop{J_{{\nu}}\/}\nolimits\!\left(z\right) corresponds to the principal value of (\tfrac{1}{2}z)^{\nu}4.2(iv)) and is analytic in the z-plane cut along the interval (-\infty,0].

When \nu=n (\in\Integer), \mathop{J_{{\nu}}\/}\nolimits\!\left(z\right) is entire in z.

For fixed z (\neq 0) each branch of \mathop{J_{{\nu}}\/}\nolimits\!\left(z\right) is entire in \nu.

Bessel Function of the Second Kind (Weber’s Function)

10.2.3\mathop{Y_{{\nu}}\/}\nolimits\!\left(z\right)=\frac{\mathop{J_{{\nu}}\/}\nolimits\!\left(z\right)\mathop{\cos\/}\nolimits\!\left(\nu\pi\right)-\mathop{J_{{-\nu}}\/}\nolimits\!\left(z\right)}{\mathop{\sin\/}\nolimits\!\left(\nu\pi\right)}.

When \nu is an integer the right-hand side is replaced by its limiting value:

10.2.4\mathop{Y_{{n}}\/}\nolimits\!\left(z\right)=\frac{1}{\pi}\left.\frac{\partial\mathop{J_{{\nu}}\/}\nolimits\!\left(z\right)}{\partial\nu}\right|_{{\nu=n}}+\left.\frac{(-1)^{{n}}}{\pi}\frac{\partial\mathop{J_{{\nu}}\/}\nolimits\!\left(z\right)}{\partial\nu}\right|_{{\nu=-n}},n=0,\pm 1,\pm 2,\ldots.

Whether or not \nu is an integer \mathop{Y_{{\nu}}\/}\nolimits\!\left(z\right) has a branch point at z=0. The principal branch corresponds to the principal branches of \mathop{J_{{\pm\nu}}\/}\nolimits\!\left(z\right) in (10.2.3) and (10.2.4), with a cut in the z-plane along the interval (-\infty,0].

Except in the case of \mathop{J_{{\pm n}}\/}\nolimits\!\left(z\right), the principal branches of \mathop{J_{{\nu}}\/}\nolimits\!\left(z\right) and \mathop{Y_{{\nu}}\/}\nolimits\!\left(z\right) are two-valued and discontinuous on the cut \mathop{\mathrm{ph}\/}\nolimits z=\pm\pi; compare §4.2(i).

Both \mathop{J_{{\nu}}\/}\nolimits\!\left(z\right) and \mathop{Y_{{\nu}}\/}\nolimits\!\left(z\right) are real when \nu is real and \mathop{\mathrm{ph}\/}\nolimits z=0.

For fixed z (\neq 0) each branch of \mathop{Y_{{\nu}}\/}\nolimits\!\left(z\right) is entire in \nu.

Bessel Functions of the Third Kind (Hankel Functions)

These solutions of (10.2.1) are denoted by \mathop{{H^{{(1)}}_{{\nu}}}\/}\nolimits\!\left(z\right) and \mathop{{H^{{(2)}}_{{\nu}}}\/}\nolimits\!\left(z\right), and their defining properties are given by

10.2.5\mathop{{H^{{(1)}}_{{\nu}}}\/}\nolimits\!\left(z\right)\sim\sqrt{2/(\pi z)}e^{{i(z-\frac{1}{2}\nu\pi-\frac{1}{4}\pi)}}

as z\to\infty in -\pi+\delta\leq\mathop{\mathrm{ph}\/}\nolimits z\leq 2\pi-\delta, and

10.2.6\mathop{{H^{{(2)}}_{{\nu}}}\/}\nolimits\!\left(z\right)\sim\sqrt{2/(\pi z)}e^{{-i\left(z-\frac{1}{2}\nu\pi-\frac{1}{4}\pi\right)}}

as z\to\infty in -2\pi+\delta\leq\mathop{\mathrm{ph}\/}\nolimits z\leq\pi-\delta, where \delta is an arbitrary small positive constant. Each solution has a branch point at z=0 for all \nu\in\Complex. The principal branches correspond to principal values of the square roots in (10.2.5) and (10.2.6), again with a cut in the z-plane along the interval (-\infty,0].

The principal branches of \mathop{{H^{{(1)}}_{{\nu}}}\/}\nolimits\!\left(z\right) and \mathop{{H^{{(2)}}_{{\nu}}}\/}\nolimits\!\left(z\right) are two-valued and discontinuous on the cut \mathop{\mathrm{ph}\/}\nolimits z=\pm\pi.

For fixed z (\neq 0) each branch of \mathop{{H^{{(1)}}_{{\nu}}}\/}\nolimits\!\left(z\right) and \mathop{{H^{{(2)}}_{{\nu}}}\/}\nolimits\!\left(z\right) is entire in \nu.

Branch Conventions

Except where indicated otherwise, it is assumed throughout the DLMF that the symbols \mathop{J_{{\nu}}\/}\nolimits\!\left(z\right), \mathop{Y_{{\nu}}\/}\nolimits\!\left(z\right), \mathop{{H^{{(1)}}_{{\nu}}}\/}\nolimits\!\left(z\right), and \mathop{{H^{{(2)}}_{{\nu}}}\/}\nolimits\!\left(z\right) denote the principal values of these functions.

Cylinder Functions

The notation \mathop{\mathscr{C}_{{\nu}}\/}\nolimits\!\left(z\right) denotes \mathop{J_{{\nu}}\/}\nolimits\!\left(z\right), \mathop{Y_{{\nu}}\/}\nolimits\!\left(z\right), \mathop{{H^{{(1)}}_{{\nu}}}\/}\nolimits\!\left(z\right), \mathop{{H^{{(2)}}_{{\nu}}}\/}\nolimits\!\left(z\right), or any nontrivial linear combination of these functions, the coefficients in which are independent of z and \nu.

§10.2(iii) Numerically Satisfactory Pairs of Solutions

Table 10.2.1 lists numerically satisfactory pairs of solutions (§2.7(iv)) of (10.2.1) for the stated intervals or regions in the case \realpart{\nu}\geq 0. When \realpart{\nu}<0, \nu is replaced by -\nu throughout.

Table 10.2.1: Numerically satisfactory pairs of solutions of Bessel’s equation.
Pair Interval or Region
\mathop{J_{{\nu}}\/}\nolimits\!\left(x\right),\mathop{Y_{{\nu}}\/}\nolimits\!\left(x\right) 0<x<\infty
\mathop{J_{{\nu}}\/}\nolimits\!\left(z\right),\mathop{Y_{{\nu}}\/}\nolimits\!\left(z\right) neighborhood of 0 in |\mathop{\mathrm{ph}\/}\nolimits z|\leq\pi
\mathop{J_{{\nu}}\/}\nolimits\!\left(z\right),\mathop{{H^{{(1)}}_{{\nu}}}\/}\nolimits\!\left(z\right) 0\leq\mathop{\mathrm{ph}\/}\nolimits z\leq\pi
\mathop{J_{{\nu}}\/}\nolimits\!\left(z\right),\mathop{{H^{{(2)}}_{{\nu}}}\/}\nolimits\!\left(z\right) -\pi\leq\mathop{\mathrm{ph}\/}\nolimits z\leq 0
\mathop{{H^{{(1)}}_{{\nu}}}\/}\nolimits\!\left(z\right),\mathop{{H^{{(2)}}_{{\nu}}}\/}\nolimits\!\left(z\right) neighborhood of \infty in |\mathop{\mathrm{ph}\/}\nolimits z|\leq\pi