27.7 Lambert Series as Generating Functions27.9 Quadratic Characters

§27.8 Dirichlet Characters

If k (>1) is a given integer, then a function \mathop{\chi\/}\nolimits\!\left(n\right) is called a Dirichlet character (mod k) if it is completely multiplicative, periodic with period k, and vanishes when \left(n,k\right)>1. In other words, Dirichlet characters (mod k) satisfy the four conditions:

An example is the principal character (mod k):

27.8.5\mathop{\chi\/}\nolimits _{1}(n)=\begin{cases}1,&\left(n,k\right)=1,\\
0,&\left(n,k\right)>1.\end{cases}

For any character \mathop{\chi\/}\nolimits\;\;(\mathop{{\rm mod}}k), \mathop{\chi\/}\nolimits\!\left(n\right)\neq 0 if and only if \left(n,k\right)=1, in which case the Euler–Fermat theorem (27.2.8) implies \left(\mathop{\chi\/}\nolimits\!\left(n\right)\right)^{{\mathop{\phi\/}\nolimits\!\left(k\right)}}=1. There are exactly \mathop{\phi\/}\nolimits\!\left(k\right) different characters (mod k), which can be labeled as \mathop{\chi\/}\nolimits _{1},\dots,\mathop{\chi\/}\nolimits _{{\mathop{\phi\/}\nolimits\!\left(k\right)}}. If \mathop{\chi\/}\nolimits is a character (mod k), so is its complex conjugate \conj{\mathop{\chi\/}\nolimits}. If \left(n,k\right)=1, then the characters satisfy the orthogonality relation

27.8.6\sum _{{r=1}}^{{\mathop{\phi\/}\nolimits\!\left(k\right)}}\mathop{\chi\/}\nolimits _{r}(m)\conj{\mathop{\chi\/}\nolimits}_{r}(n)=\begin{cases}\mathop{\phi\/}\nolimits\!\left(k\right),&m\equiv n\;\;(\mathop{{\rm mod}}k),\\
0,&\mbox{otherwise}.\end{cases}

A Dirichlet character \mathop{\chi\/}\nolimits\;\;(\mathop{{\rm mod}}k) is called primitive (mod k) if for every proper divisor d of k (that is, a divisor d<k), there exists an integer a\equiv 1\;\;(\mathop{{\rm mod}}d), with \left(a,k\right)=1 and \mathop{\chi\/}\nolimits\!\left(a\right)\neq 1. If k is prime, then every nonprincipal character \mathop{\chi\/}\nolimits\;\;(\mathop{{\rm mod}}k) is primitive. A divisor d of k is called an induced modulus for \mathop{\chi\/}\nolimits if

27.8.7\mathop{\chi\/}\nolimits\!\left(a\right)=1\text{ for all $a\equiv 1$ (mod $d$)},\left(a,k\right)=1.

Every Dirichlet character \mathop{\chi\/}\nolimits (mod k) is a product

27.8.8\mathop{\chi\/}\nolimits\!\left(n\right)=\mathop{\chi\/}\nolimits _{0}(n)\mathop{\chi\/}\nolimits _{1}(n),

where \mathop{\chi\/}\nolimits _{0} is a character (mod d) for some induced modulus d for \mathop{\chi\/}\nolimits, and \mathop{\chi\/}\nolimits _{1} is the principal character (mod k). A character is real if all its values are real. If k is odd, then the real characters (mod k) are the principal character and the quadratic characters described in the next section.