About the Project

.男篮世界杯预选赛中国vs黎巴嫩『wn4.com』咪咕世界杯营销方案.w6n2c9o.2022年11月29日5时52分2秒.yeyo8yaka

AdvancedHelp

(0.006 seconds)

11—20 of 814 matching pages

11: 28.6 Expansions for Small q
For more details on these expansions and recurrence relations for the coefficients see Frenkel and Portugal (2001, §2). The coefficients of the power series of a 2 n ( q ) , b 2 n ( q ) and also a 2 n + 1 ( q ) , b 2 n + 1 ( q ) are the same until the terms in q 2 n 2 and q 2 n , respectively. … Here j = 1 for a 2 n ( q ) , j = 2 for b 2 n + 2 ( q ) , and j = 3 for a 2 n + 1 ( q ) and b 2 n + 1 ( q ) . … where k is the unique root of the equation 2 E ( k ) = K ( k ) in the interval ( 0 , 1 ) , and k = 1 k 2 . … For more details on these expansions and recurrence relations for the coefficients see Frenkel and Portugal (2001, §2). …
12: 25.20 Approximations
  • Cody et al. (1971) gives rational approximations for ζ ( s ) in the form of quotients of polynomials or quotients of Chebyshev series. The ranges covered are 0.5 s 5 , 5 s 11 , 11 s 25 , 25 s 55 . Precision is varied, with a maximum of 20S.

  • Piessens and Branders (1972) gives the coefficients of the Chebyshev-series expansions of s ζ ( s + 1 ) and ζ ( s + k ) , k = 2 , 3 , 4 , 5 , 8 , for 0 s 1 (23D).

  • Luke (1969b, p. 306) gives coefficients in Chebyshev-series expansions that cover ζ ( s ) for 0 s 1 (15D), ζ ( s + 1 ) for 0 s 1 (20D), and ln ξ ( 1 2 + i x ) 25.4) for 1 x 1 (20D). For errata see Piessens and Branders (1972).

  • Morris (1979) gives rational approximations for Li 2 ( x ) 25.12(i)) for 0.5 x 1 . Precision is varied with a maximum of 24S.

  • Antia (1993) gives minimax rational approximations for Γ ( s + 1 ) F s ( x ) , where F s ( x ) is the Fermi–Dirac integral (25.12.14), for the intervals < x 2 and 2 x < , with s = 1 2 , 1 2 , 3 2 , 5 2 . For each s there are three sets of approximations, with relative maximum errors 10 4 , 10 8 , 10 12 .

  • 13: 24.20 Tables
    Abramowitz and Stegun (1964, Chapter 23) includes exact values of k = 1 m k n , m = 1 ( 1 ) 100 , n = 1 ( 1 ) 10 ; k = 1 k n , k = 1 ( 1 ) k 1 k n , k = 0 ( 2 k + 1 ) n , n = 1 , 2 , , 20D; k = 0 ( 1 ) k ( 2 k + 1 ) n , n = 1 , 2 , , 18D. Wagstaff (1978) gives complete prime factorizations of N n and E n for n = 20 ( 2 ) 60 and n = 8 ( 2 ) 42 , respectively. In Wagstaff (2002) these results are extended to n = 60 ( 2 ) 152 and n = 40 ( 2 ) 88 , respectively, with further complete and partial factorizations listed up to n = 300 and n = 200 , respectively. For information on tables published before 1961 see Fletcher et al. (1962, v. 1, §4) and Lebedev and Fedorova (1960, Chapters 11 and 14).
    14: 27.2 Functions
    where p 1 , p 2 , , p ν ( n ) are the distinct prime factors of n , each exponent a r is positive, and ν ( n ) is the number of distinct primes dividing n . … The ϕ ( n ) numbers a , a 2 , , a ϕ ( n ) are relatively prime to n and distinct (mod n ). …It is the special case k = 2 of the function d k ( n ) that counts the number of ways of expressing n as the product of k factors, with the order of factors taken into account. …
    27.2.12 μ ( n ) = { 1 , n = 1 , ( 1 ) ν ( n ) , a 1 = a 2 = = a ν ( n ) = 1 , 0 , otherwise .
    Table 27.2.2: Functions related to division.
    n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n )
    11 10 2 12 24 8 8 60 37 36 2 38 50 20 6 93
    15: Bibliography
  • M. Abramowitz (1949) Asymptotic expansions of spheroidal wave functions. J. Math. Phys. Mass. Inst. Tech. 28, pp. 195–199.
  • L. V. Ahlfors (1966) Complex Analysis: An Introduction of the Theory of Analytic Functions of One Complex Variable. 2nd edition, McGraw-Hill Book Co., New York.
  • S. Ahmed and M. E. Muldoon (1980) On the zeros of confluent hypergeometric functions. III. Characterization by means of nonlinear equations. Lett. Nuovo Cimento (2) 29 (11), pp. 353–358.
  • V. I. Arnol’d (1974) Normal forms of functions in the neighborhood of degenerate critical points. Uspehi Mat. Nauk 29 (2(176)), pp. 11–49 (Russian).
  • R. Askey (1980) Some basic hypergeometric extensions of integrals of Selberg and Andrews. SIAM J. Math. Anal. 11 (6), pp. 938–951.
  • 16: Bibliography E
  • C. Eckart (1930) The penetration of a potential barrier by electrons. Phys. Rev. 35 (11), pp. 1303–1309.
  • Á. Elbert and A. Laforgia (1994) Interlacing properties of the zeros of Bessel functions. Atti Sem. Mat. Fis. Univ. Modena XLII (2), pp. 525–529.
  • A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi (1953b) Higher Transcendental Functions. Vol. II. McGraw-Hill Book Company, Inc., New York-Toronto-London.
  • F. H. L. Essler, H. Frahm, A. R. Its, and V. E. Korepin (1996) Painlevé transcendent describes quantum correlation function of the X X Z antiferromagnet away from the free-fermion point. J. Phys. A 29 (17), pp. 5619–5626.
  • L. Euler (1768) Institutiones Calculi Integralis. Opera Omnia (1), Vol. 11, pp. 110–113.
  • 17: Bibliography L
  • A. Leitner and J. Meixner (1960) Eine Verallgemeinerung der Sphäroidfunktionen. Arch. Math. 11, pp. 29–39.
  • M. Lerch (1887) Note sur la fonction 𝔎 ( w , x , s ) = k = 0 e 2 k π i x ( w + k ) s . Acta Math. 11 (1-4), pp. 19–24 (French).
  • H. Lotsch and M. Gray (1964) Algorithm 244: Fresnel integrals. Comm. ACM 7 (11), pp. 660–661.
  • N. A. Lukaševič (1967b) On the theory of Painlevé’s third equation. Differ. Uravn. 3 (11), pp. 1913–1923 (Russian).
  • Y. L. Luke (1977a) Algorithms for rational approximations for a confluent hypergeometric function. Utilitas Math. 11, pp. 123–151.
  • 18: 26.12 Plane Partitions
    The number of self-complementary plane partitions in B ( 2 r , 2 s , 2 t ) is …in B ( 2 r + 1 , 2 s , 2 t ) it is …in B ( 2 r + 1 , 2 s + 1 , 2 t ) it is … The number of symmetric self-complementary plane partitions in B ( 2 r , 2 r , 2 t ) is …in B ( 2 r + 1 , 2 r + 1 , 2 t ) it is …
    19: 18.8 Differential Equations
    Table 18.8.1: Classical OP’s: differential equations A ( x ) f ′′ ( x ) + B ( x ) f ( x ) + C ( x ) f ( x ) + λ n f ( x ) = 0 .
    # f ( x ) A ( x ) B ( x ) C ( x ) λ n
    9 e 1 2 x 2 x α + 1 2 L n ( α ) ( x 2 ) 1 0 x 2 + ( 1 4 α 2 ) x 2 4 n + 2 α + 2
    11 e n 1 x x + 1 L n 1 ( 2 + 1 ) ( 2 n 1 x ) 1 0 2 x ( + 1 ) x 2 1 n 2
    12 H n ( x ) 1 2 x 0 2 n
    13 e 1 2 x 2 H n ( x ) 1 0 x 2 2 n + 1
    Item 11 of Table 18.8.1 yields (18.39.36) for Z = 1 .
    20: Bibliography K
  • G. A. Kalugin, D. J. Jeffrey, and R. M. Corless (2012) Bernstein, Pick, Poisson and related integral expressions for Lambert W . Integral Transforms Spec. Funct. 23 (11), pp. 817–829.
  • E. L. Kaplan (1948) Auxiliary table for the incomplete elliptic integrals. J. Math. Physics 27, pp. 11–36.
  • Y. S. Kim, A. K. Rathie, and R. B. Paris (2013) An extension of Saalschütz’s summation theorem for the series F r + 2 r + 3 . Integral Transforms Spec. Funct. 24 (11), pp. 916–921.
  • K. S. Kölbig (1968) Algorithm 327: Dilogarithm [S22]. Comm. ACM 11 (4), pp. 270–271.
  • T. H. Koornwinder (1981) Clebsch-Gordan coefficients for SU ( 2 ) and Hahn polynomials. Nieuw Arch. Wisk. (3) 29 (2), pp. 140–155.